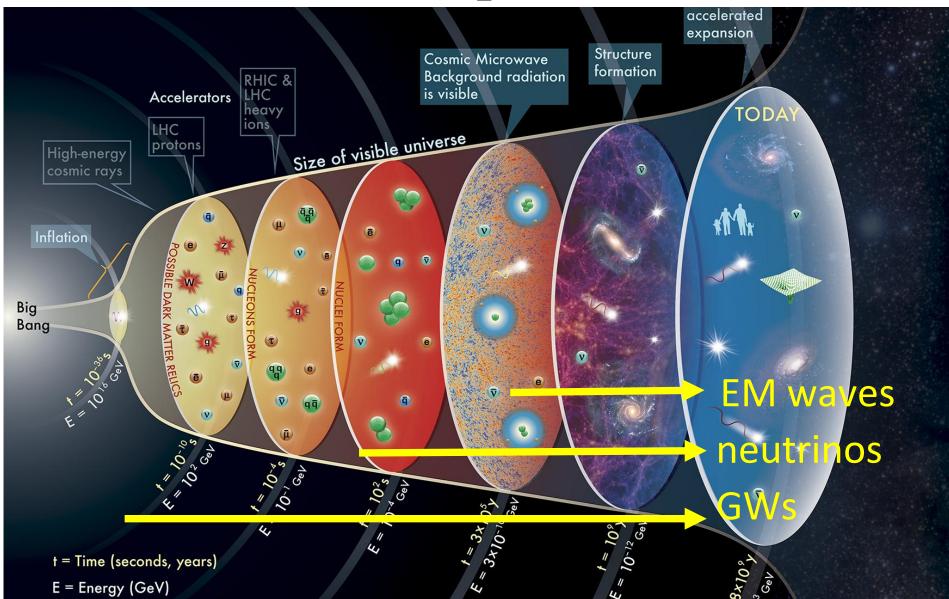
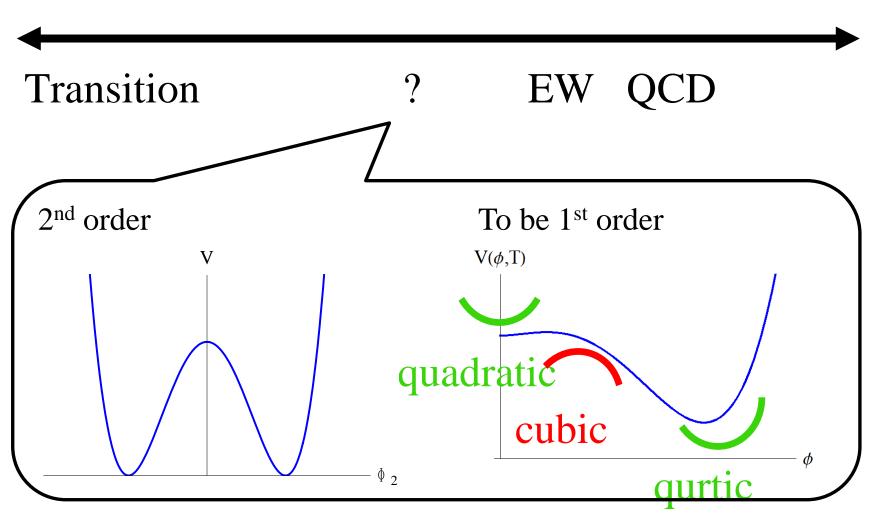
Gravitational wave generation by B-L symmetry breaking


Osamu Seto (Hokkaido Univ.)

With: Nobuchika Okada (U. of Alabama)

Refs : Phys. Rev. D 98, 063532 (2018)

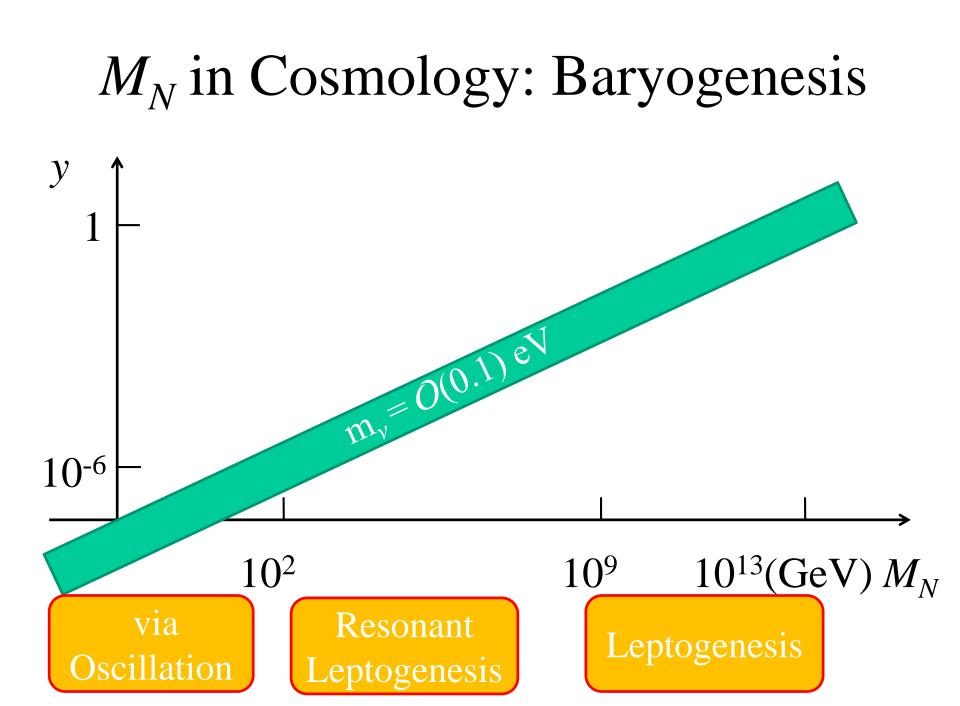
§ Introduction


The most penetrable

Phase transitions in the early Universe

Energy

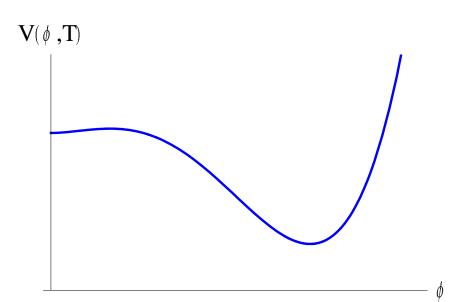
time

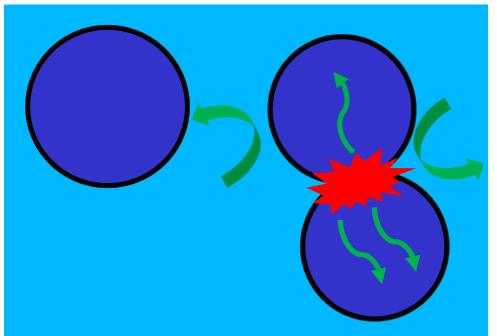


Nonvanishing neutrino mass

- Neutrino oscillation
 - \longrightarrow tiny (< 0.1 eV) but massive neutrino
- No mass in the renormalizable SM

• Seesaw mechanism for Majorana neutrino [Yanagida, Gell-Mann et al (1979)]


$$\begin{pmatrix} 0 & yv \\ yv & M_N \end{pmatrix} \rightarrow \begin{pmatrix} -(yv)^2/M_N & 0 \\ 0 & M_N \end{pmatrix}$$



§ GW

GW from 1st order phase transitions

• Potential barrier and • Bubble formation 1st order phase transition

- Bubble collision
- Sound waves in the fluid
- Turbulence in the fluid

GWs spectrum

- At radiation dominated Universe
- The energy density of radiation
- The latent heat density

$$\epsilon = \left(V - T \frac{\partial V}{\partial T} \right) \Big|_{\{\phi_{\text{high}}, T_{\star}\}} - \left(V - T \frac{\partial V}{\partial T} \right) \Big|_{\{\phi_{\text{low}}, T_{\star}\}}$$

$$\alpha \equiv \frac{\epsilon}{\rho_{\rm rad}}$$

 $\rho_{\rm rad} = \frac{\pi^2 g_*}{30} T^4$

• Transition time

- Bubble nucleation rate $\Gamma(T) = \Gamma_0 e^{-S(T)} \simeq \Gamma_0 e^{-S_E^3(T)/T}$

$$\frac{\beta}{H_{\star}} \simeq \left. T \frac{dS}{dT} \right|_{T_{\star}} = \left. T \frac{d(S_E^3/T)}{dT} \right|_{T_{\star}}$$

GWs spectrum

• Bubble collision [Kosowsky and Turner (1993), Huber and Konstandin (2008)]

$$f_{\rm peak} \simeq 17 \left(\frac{f_{\star}}{\beta}\right) \left(\frac{\beta}{H_{\star}}\right) \left(\frac{T_{\star}}{10^8 \,{\rm GeV}}\right) \left(\frac{g_{\star}}{100}\right)^{1/6} {\rm Hz},$$
$$h^2 \Omega_{GW}(f_{\rm peak}) \simeq 1.7 \times 10^{-5} \kappa^2 \Delta \left(\frac{\beta}{H_{\star}}\right)^{-2} \left(\frac{\alpha}{1+\alpha}\right)^2 \left(\frac{g_{\star}}{100}\right)^{-1/3},$$

• Sound waves [Hindmarsh et al (2014, 2015), Caprini et al (2016)]

$$f_{\text{peak}} \simeq 19 \frac{1}{v_b} \left(\frac{\beta}{H_\star}\right) \left(\frac{T_\star}{10^8 \,\text{GeV}}\right) \left(\frac{g_*}{100}\right)^{1/6} \text{Hz},$$
$$h^2 \Omega_{GW}(f_{\text{peak}}) \simeq 2.7 \times 10^{-6} \kappa_v^2 v_b \left(\frac{\beta}{H_\star}\right)^{-1} \left(\frac{\alpha}{1+\alpha}\right)^2 \left(\frac{g_*}{100}\right)^{-1/3}$$

• Turbulence [Kamionkowski et al (1994), Caprini et al (2009)]

$$f_{\text{peak}} \simeq 27 \frac{1}{v_b} \left(\frac{\beta}{H_\star}\right) \left(\frac{T_\star}{10^8 \,\text{GeV}}\right) \left(\frac{g_*}{100}\right)^{1/6} \text{Hz},$$
$$h^2 \Omega_{GW}(f_{\text{peak}}) \simeq 3.4 \times 10^{-4} v_b \left(\frac{\beta}{H_\star}\right)^{-1} \left(\frac{\kappa_{\text{turb}}\alpha}{1+\alpha}\right)^{3/2} \left(\frac{g_*}{100}\right)^{-1/3}$$

§ GW from $U(1)_{B-L}$ breaking

$U(1)_{B-L}$ gauge symmetry

- A simplest anomaly-free U(1) gauge theory
 - Three generations of RH neutrino
 - The origin of RH neutrino masses

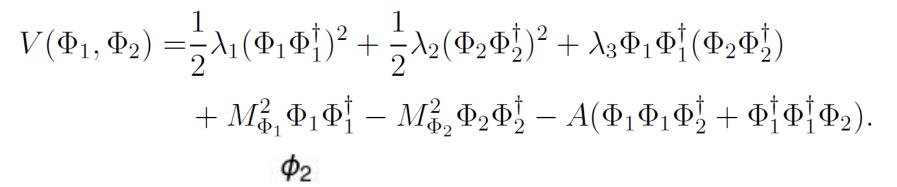
$$m_{N_R^i} = \frac{Y_{N^i}}{\sqrt{2}} v_2$$

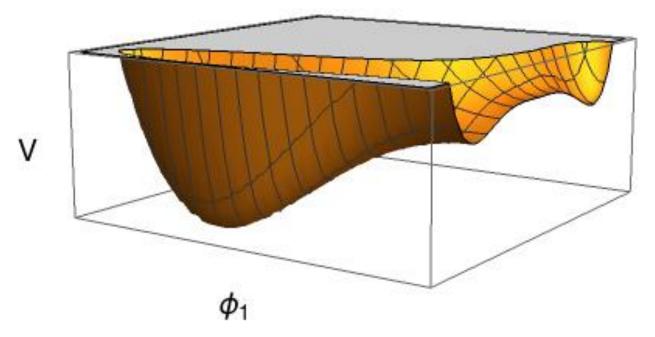
- Higgs field with B-L charge "+2" Φ_2
- $\mathcal{L} = y L \Phi N + \frac{1}{2} Y_N N \Phi_2 N$

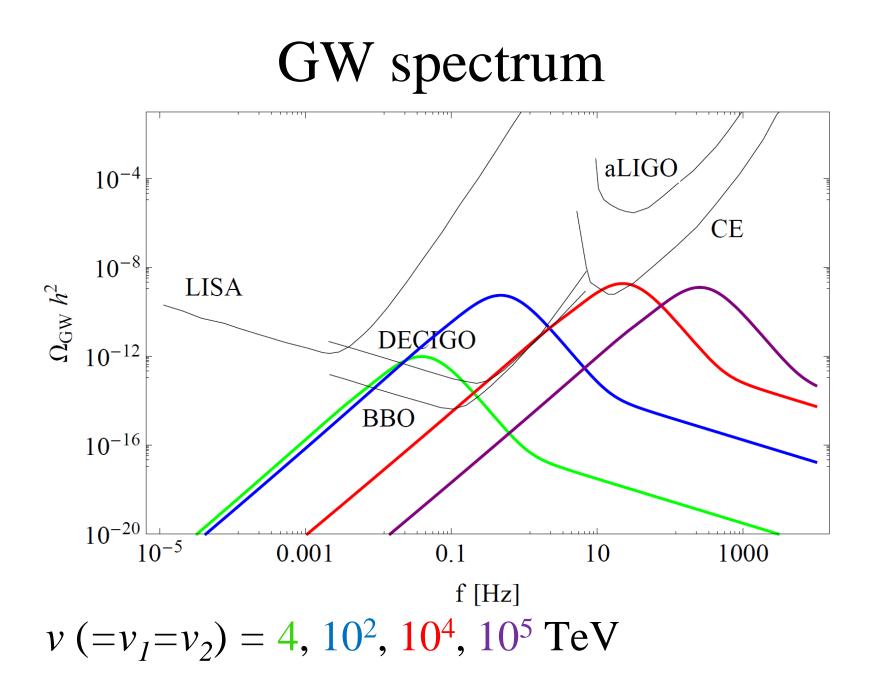
-1 +2 -1

- One extra neutral gauge boson

$$M_{Z'}^2 = 4g_{B-L}^2 v_2^2$$


Model: next to minimal


Content


	$SU(3)_c$	$SU(2)_{I}$	$_{\rm L}~{\rm U}(1)_Y$	$\mathrm{U}(1)_{B-L}$	Yukawa interaction
q_L^i	3	2	1/6	1/3	
u_R^i	3	1	2/3	1/3	$\mathcal{L}_{Yukawa} \supset -\sum_{i=1}^{3}\sum_{j=1}^{3}Y_{D}^{ij}\overline{\ell_{L}^{i}}HN_{R}^{j} - \frac{1}{2}\sum_{j=1}^{3}Y_{N^{k}}\Phi_{2}\overline{N_{R}^{k-C}}N_{R}^{k} + \mathrm{H}.$
d_R^i	3	1	-1/3	1/3	$\overline{i=1}$ $\overline{j=1}$ $\sum_{k=1}^{2}$ $\overline{k=1}$
ℓ_L^i	1	2	-1/2	-1	
e_R^i	1	1	-1	-1	
H	1	2	-1/2	0	
N_R^i	1	1	0	-1	
Φ_1	1	1	0	+1	Uiggs potential
Φ_2	1	1	0	+2	Higgs potential
	τ./	(—	み)	1,	$(\Phi, \Phi^{\dagger})^2 + \frac{1}{2} \cdot (\Phi, \Phi^{\dagger})^2 + \lambda, \Phi, \Phi^{\dagger}(\Phi, \Phi^{\dagger})$

 $V(\Phi_1, \Phi_2) = \frac{1}{2} \lambda_1 (\Phi_1 \Phi_1^{\dagger})^2 + \frac{1}{2} \lambda_2 (\Phi_2 \Phi_2^{\dagger})^2 + \lambda_3 \Phi_1 \Phi_1^{\dagger} (\Phi_2 \Phi_2^{\dagger})$ $+ M_{\Phi_1}^2 \Phi_1 \Phi_1^{\dagger} - M_{\Phi_2}^2 \Phi_2 \Phi_2^{\dagger} - A(\Phi_1 \Phi_1 \Phi_2^{\dagger} + \Phi_1^{\dagger} \Phi_1^{\dagger} \Phi_2).$

Higgs potential

§ Summary

- The scale of gauged B-L symmetry could be probed by GWs
 - RH neutrino masses:
 - maybe much higher than the EW scale
 - B-L may be strong 1st order
 - Sources of cosmological GWs from an intermediate scale phase transition
 - Thermal history of the Universe
 - Implication to Baryogenesis
 - Inaccessible high scale particle physics for colliders
- Caveat

- Gauge dependence problem [e.g., Chiang and Senaha (2017)]