Minimal Neutral Naturalness Model

Ling-Xiao Xu (徐凌霄) Peking University

hep-ph/1810.01882

with Jiang-Hao Yu and Shou-hua Zhu

KEK-PH 2018 Winter @ Tsukuba, Japan 5 December, 2018

Origin of EWSB

Landau Ginzburg Potential with its origin unexplained

$$V(H) = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$

Other Possibilities?

Origin of EWSB

Landau Ginzburg Potential with its origin unexplained

$$V(H) = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$

- Other Possibilities?
- Pseudo Nambu-Goldstone Higgs (coset G/H)
 - Naturalness problem solved

$$m_h \sim a \frac{y_t f}{4\pi} \sim \frac{3M_T}{4\pi}$$

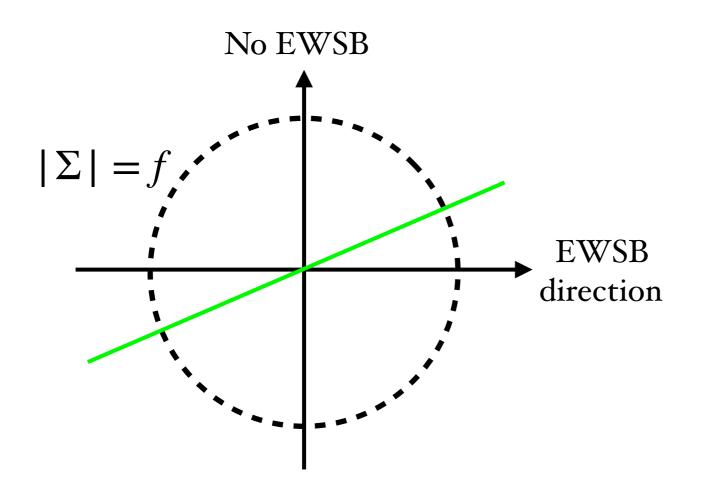
Radiative Higgs potential

Shift Symmetry
$$\pi o \pi + c$$

• EWSB explained

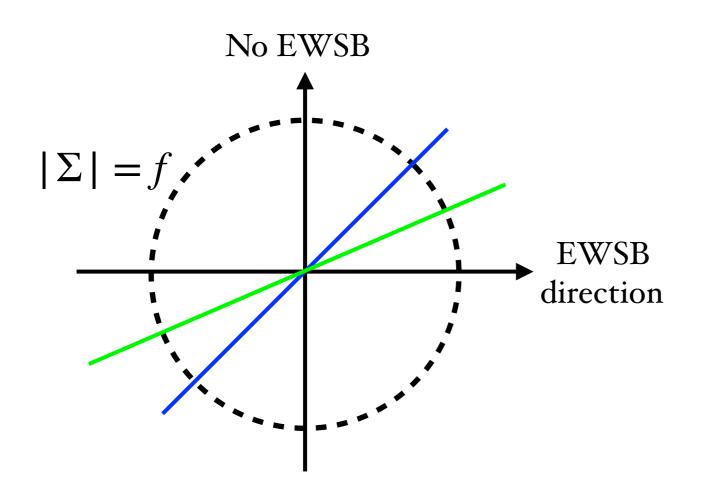
$$V(h) \simeq -\gamma \sin^2\left(\frac{h}{f}\right) + \beta \sin^4\left(\frac{h}{f}\right) \qquad \qquad \text{misalignment:} \quad \frac{v^2}{f^2} \; = \; \frac{\gamma}{2\beta}$$

$$V(h) \simeq -\gamma \sin^2\left(\frac{h}{f}\right) + \beta \sin^4\left(\frac{h}{f}\right) \qquad \qquad \text{misalignment:} \quad \frac{v^2}{f^2} \; = \; \frac{\gamma}{2\beta}$$



$$\beta \ll \gamma \left(\frac{v^2}{f^2} \sim 1\right)$$

$$V(h) \simeq -\gamma \sin^2 \left(\frac{h}{f}\right) + \beta \sin^4 \left(\frac{h}{f}\right) \qquad \qquad \text{misalignment:} \quad \frac{v^2}{f^2} \; = \; \frac{\gamma}{2\beta}$$

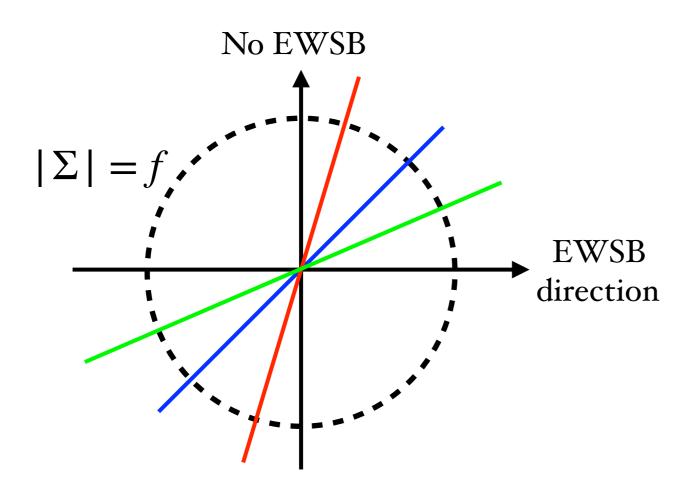


$$\beta \ll \gamma \left(\frac{v^2}{f^2} \sim 1\right)$$

$$\beta = \gamma \left(\frac{v^2}{f^2} = 0.5 \right)$$

$$V(h) \simeq -\gamma \sin^2\left(\frac{h}{f}\right) + \beta \sin^4\left(\frac{h}{f}\right)$$

misalignment:
$$\frac{v^2}{f^2} = \frac{\gamma}{2\beta}$$



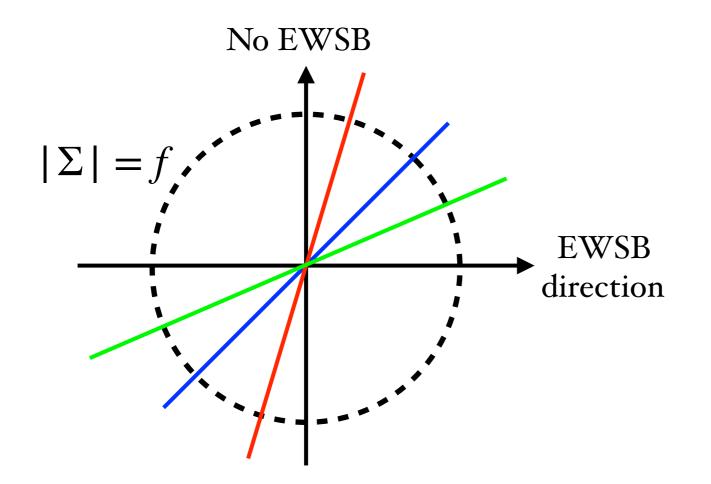
$$\beta \ll \gamma \left(\frac{v^2}{f^2} \sim 1\right)$$

$$\beta = \gamma \left(\frac{v^2}{f^2} = 0.5 \right)$$

$$\gamma \ll \beta \left(\frac{v^2}{f^2} \sim 0.1\right)$$

as required by Higgs data

$$V(h) \simeq -\gamma \sin^2\left(\frac{h}{f}\right) + \beta \sin^4\left(\frac{h}{f}\right) \qquad \qquad \text{misalignment:} \quad \frac{v^2}{f^2} \; = \; \frac{\gamma}{2\beta}$$

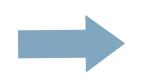


$$\beta \ll \gamma \left(\frac{v^2}{f^2} \sim 1\right)$$

$$\beta = \gamma \left(\frac{v^2}{f^2} = 0.5 \right)$$

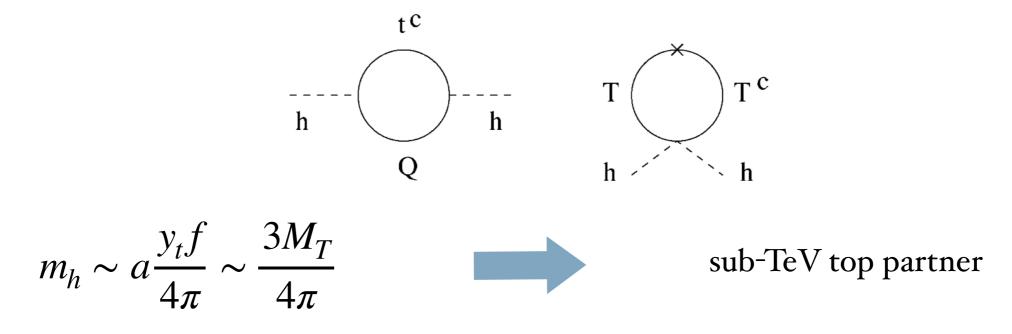
$$\gamma \ll \beta \left(\frac{v^2}{f^2} \sim 0.1\right)$$

as required by Higgs data



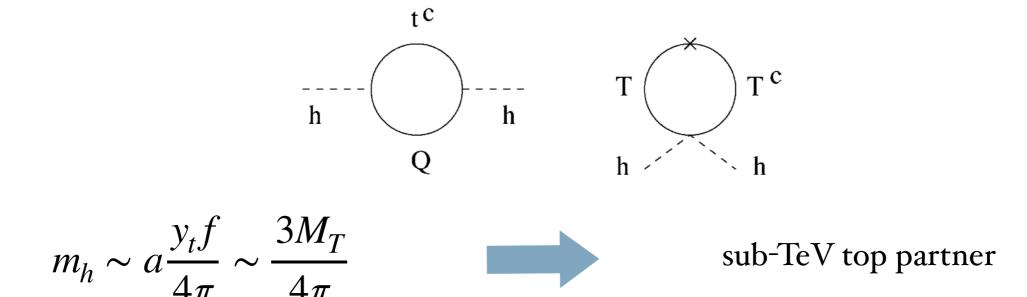
Can small misalignment angle be realized naturally? even only considering fermion contribution?

Neutral Naturalness Era



Colorless top partners are highly motivated!

Neutral Naturalness Era



Colorless top partners are highly motivated!

Neutral Naturalness Models (apology if I miss your work)

Twin Higgs: Chacko, Goh, Harnik, 0506256

Quirky Little Higgs: Cai, Cheng, Terning, 0812.0843

Orbifold Higgs: Craig, Knapen, Longhi, 1410.6808

Composite Twin Higgs:

Geller, Telem, 1411.2974; Barbieri, Greco, Rattazzi, Wulzer, 1501.07803; Low, Tesi, Wang 1501.07890

Neutral Naturalness in SO(6)/SO(5) (trigonometric parity within coset):

Serra, Torre, 1709.05399; Csaki, Ma, Shu, 1709.08636; Dillon, 1806.10702

- Mirror copy of the SM
- $\tilde{v}, \tilde{\gamma} \longrightarrow N_{eff}$
- Coset: SU(4)/SU(3) or SO(8)/SO(7)
- Additional Z2-breaking sources needed for vacuum misalignment

• Mirror copy of the SM

- $\tilde{v}, \tilde{\gamma} \longrightarrow N_{eff}$
- Coset: SU(4)/SU(3) or SO(8)/SO(7)
- Additional Z2-breaking sources needed for vacuum misalignment

Our construction with minimal spectrum and coset:

• Vector-like top partners: one doublet and one singlet

$$\widetilde{q} \sim (3,1,2)_Y$$

$$SU(3)'_c \times SU(3)_c \times SU(2)_L \times U(1)_Y$$
 $\widetilde{T} \sim (3,1,1)_Y$

• Mirror copy of the SM

- $\tilde{v}, \tilde{\gamma} \longrightarrow N_{eff}$
- Coset: SU(4)/SU(3) or SO(8)/SO(7)
- Additional Z2-breaking sources needed for vacuum misalignment

Our construction with minimal spectrum and coset:

• Vector-like top partners: one doublet and one singlet

$$\widetilde{q} \sim (3,1,2)_Y$$

$$SU(3)'_c \times SU(3)_c \times SU(2)_L \times U(1)_Y$$
 $\widetilde{T} \sim (3,1,1)_Y$

Minimal coset SO(5)/SO(4), without compositeness at low energies
 Agashe, Contino, Pomarol, 0412089

• Mirror copy of the SM

- $\tilde{v}, \tilde{\gamma} \longrightarrow N_{eff}$
- Coset: SU(4)/SU(3) or SO(8)/SO(7)
- Additional Z2-breaking sources needed for vacuum misalignment

Our construction with minimal spectrum and coset:

• Vector-like top partners: one doublet and one singlet

$$\widetilde{q} \sim (3,1,2)_Y$$

$$SU(3)'_c \times SU(3)_c \times SU(2)_L \times U(1)_Y$$
 $\widetilde{T} \sim (3,1,1)_Y$

- Minimal coset SO(5)/SO(4), without compositeness at low energies
 Agashe, Contino, Pomarol, 0412089
- Natural vacuum misalignment even with only fermions

Fermion Embeddings

$$-\mathcal{L}_{\text{top}} = y\bar{Q}_L \Sigma t_R + \tilde{y}\bar{\tilde{Q}}_L \Sigma \tilde{T}_R - m_{\tilde{q}}\bar{\tilde{Q}}_L \tilde{Q}_R + \text{h.c.}$$

$$Q_L = \frac{1}{\sqrt{2}} \begin{pmatrix} b_L \\ -ib_L \\ t_L \\ it_L \\ 0 \end{pmatrix} \subset \mathbf{5}$$

$$\Sigma = f \ (0, 0, 0, s_h, c_h)^T$$

$$\widetilde{Q}_R = \frac{1}{\sqrt{2}} \begin{pmatrix} \widetilde{b}_L \\ \widetilde{t}_L \\ i\widetilde{t}_L \\ \sqrt{2}\widetilde{T}_L \end{pmatrix} \subset \mathbf{5}$$

$$\widetilde{T}_R \subset \mathbf{1}$$

Fermion Embeddings

$$-\mathcal{L}_{\text{top}} = y\bar{Q}_L\Sigma t_R + \tilde{y}\bar{\tilde{Q}}_L\Sigma\tilde{T}_R - m_{\tilde{q}}\bar{\tilde{Q}}_L\tilde{Q}_R + \text{h.c.}$$

$$Q_L = \frac{1}{\sqrt{2}} \begin{pmatrix} b_L \\ -ib_L \\ t_L \\ it_L \\ 0 \end{pmatrix} \subset \mathbf{5}$$

$$\Sigma = f \ (0, 0, 0, s_h, c_h)^T \qquad \widetilde{Q}_R = \frac{1}{\sqrt{2}} \begin{pmatrix} \widetilde{b}_L \\ \widetilde{t}_L \\ i\widetilde{t}_L \\ \sqrt{2}\widetilde{T}_L \end{pmatrix} \subset \mathbf{5}$$

$$T_R \subset \mathbf{1}$$

$$c_{h} \underbrace{\downarrow}_{T_{R}} c_{h} V(h) \sim \frac{y^{2} f^{2} N_{c} \Lambda^{2}}{16\pi^{2}} \left(\frac{1}{2} s_{h}^{2} + \frac{1}{2} s_{h}^{2} + c_{h}^{2} \right)$$

• Quadratic divergence cancellation from symmetry perspective

$$Z_2: y\bar{Q}_L\Sigma t_R \longleftrightarrow \tilde{y}\bar{\tilde{Q}}_L\Sigma \tilde{T}_R$$

$$\mathcal{L}_{\text{top}} \supset y\bar{\mathcal{Q}}_L \Sigma \mathcal{T}_R + \text{h.c.}$$

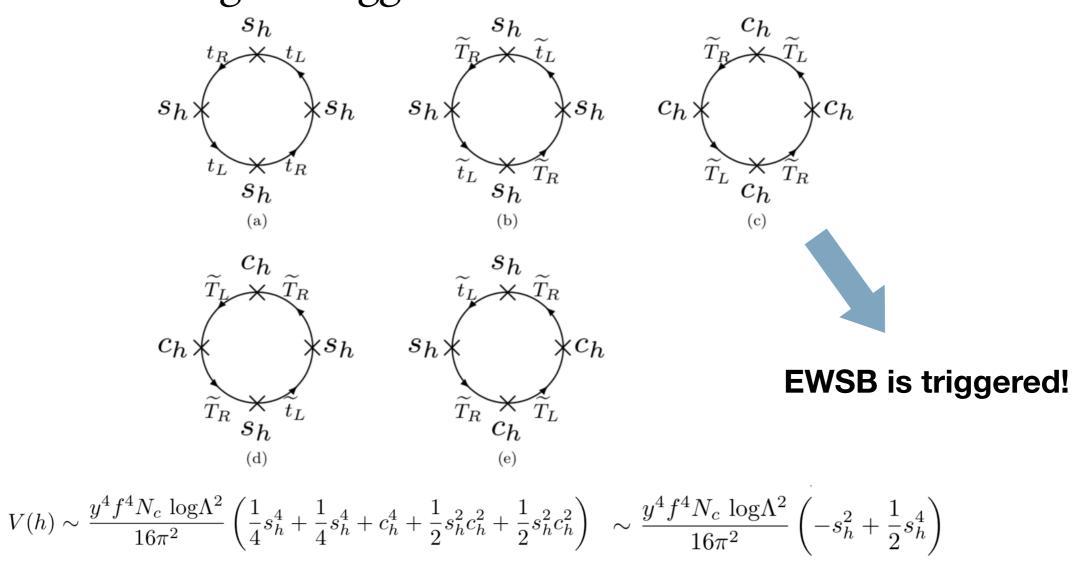
$$Q_L = (Q_L, \widetilde{Q}_L)$$
 $\mathcal{T}_R = (t_R, \widetilde{T}_R)$

Quadratic divergence cancellation from symmetry perspective

$$Z_2: y \bar{Q}_L \Sigma t_R \longleftrightarrow \tilde{y} \bar{\tilde{Q}}_L \Sigma \tilde{T}_R$$

$$\mathcal{L}_{\text{top}} \supset y \bar{\mathcal{Q}}_L \Sigma \mathcal{T}_R + \text{h.c.} \qquad \qquad \mathcal{Q}_L = (Q_L, \tilde{Q}_L) \qquad \mathcal{T}_R = (t_R, \tilde{T}_R)$$

Logarithmic divergent Higgs Potential from Yukawa terms

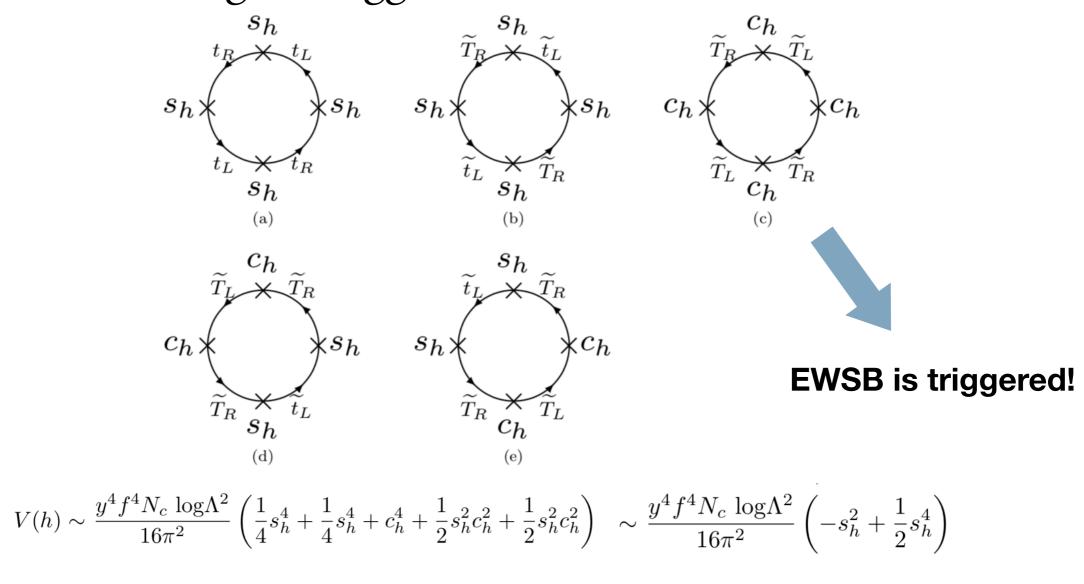


Quadratic divergence cancellation from symmetry perspective

$$Z_2: \quad y\bar{Q}_L\Sigma t_R \longleftrightarrow \tilde{y}\bar{\widetilde{Q}}_L\Sigma \widetilde{T}_R$$

$$\mathcal{L}_{\mathrm{top}}\supset y\bar{\mathcal{Q}}_L\Sigma \mathcal{T}_R + \mathrm{h.c.} \qquad \qquad \mathcal{Q}_L = (Q_L, \widetilde{Q}_L) \qquad \mathcal{T}_R = (t_R, \widetilde{T}_R)$$

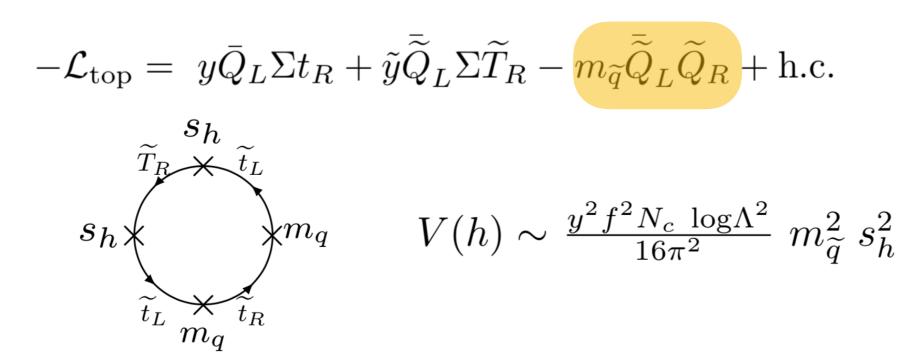
Logarithmic divergent Higgs Potential from Yukawa terms



So far, vacuum is not correctly misaligned

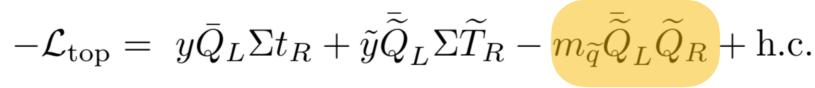
Vacuum Misalignment

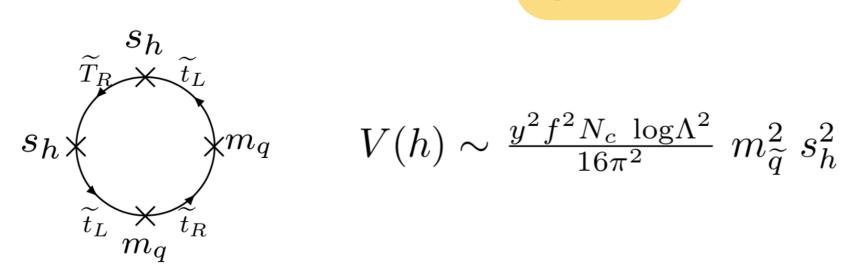
Logarithmic divergent Higgs Potential including the mass term



Vacuum Misalignment

Logarithmic divergent Higgs Potential including the mass term





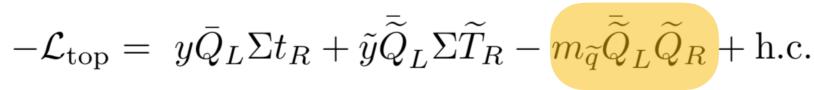
Total logarithmic divergent Higgs potential

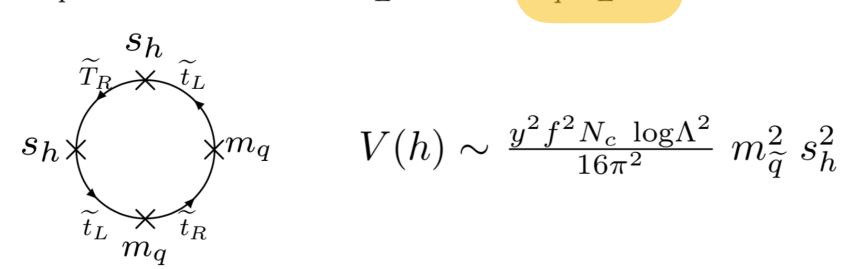
$$V(h) \sim \frac{y^2 f^2 N_c \log \Lambda^2}{16\pi^2} \left[(m_{\widetilde{q}}^2 - y^2 f^2) s_h^2 + \frac{y^2 f^2}{2} s_h^4 \right]$$

$$\xi \equiv \frac{v^2}{f^2} \simeq 1 - \frac{m_{\widetilde{q}}^2}{y^2 f^2}$$

Vacuum Misalignment

Logarithmic divergent Higgs Potential including the mass term





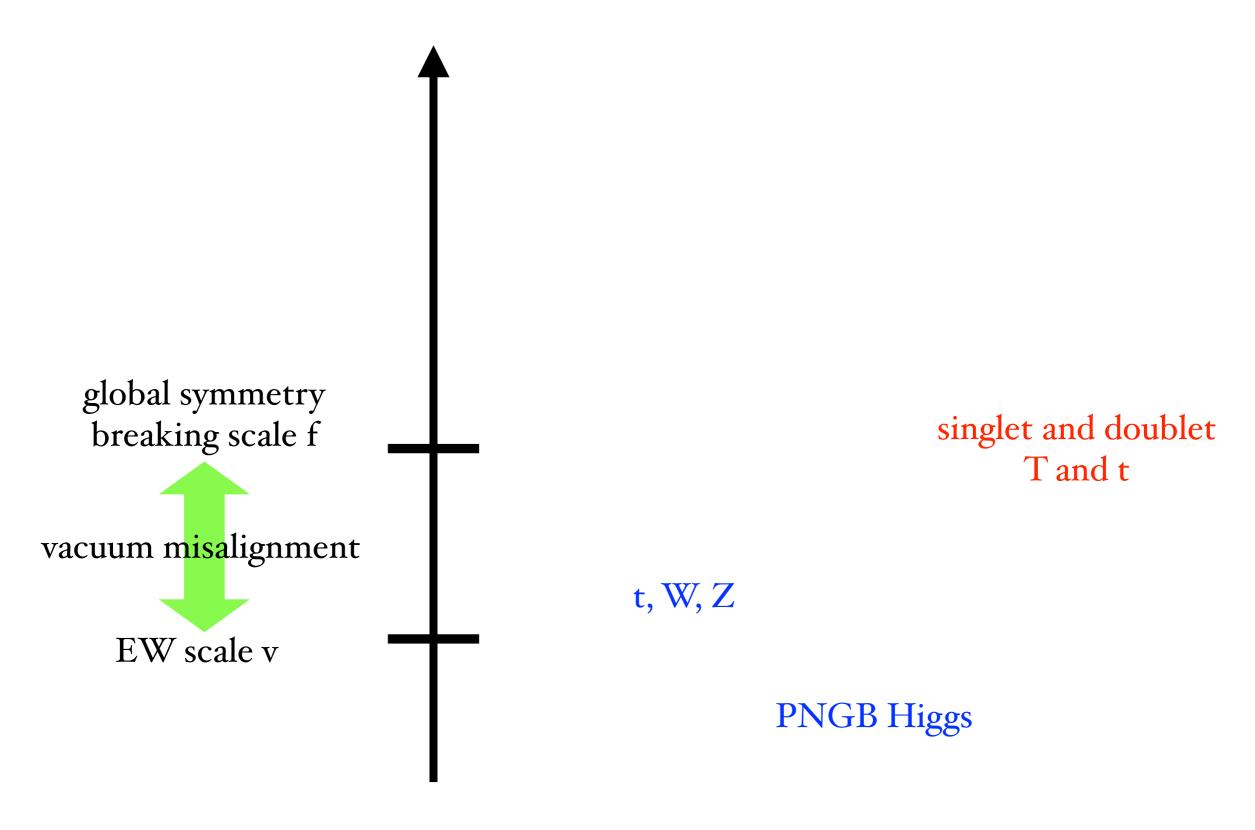
Total logarithmic divergent Higgs potential

$$V(h) \sim \frac{y^2 f^2 N_c \log \Lambda^2}{16\pi^2} \left[(m_{\widetilde{q}}^2 - y^2 f^2) s_h^2 + \frac{y^2 f^2}{2} s_h^4 \right]$$

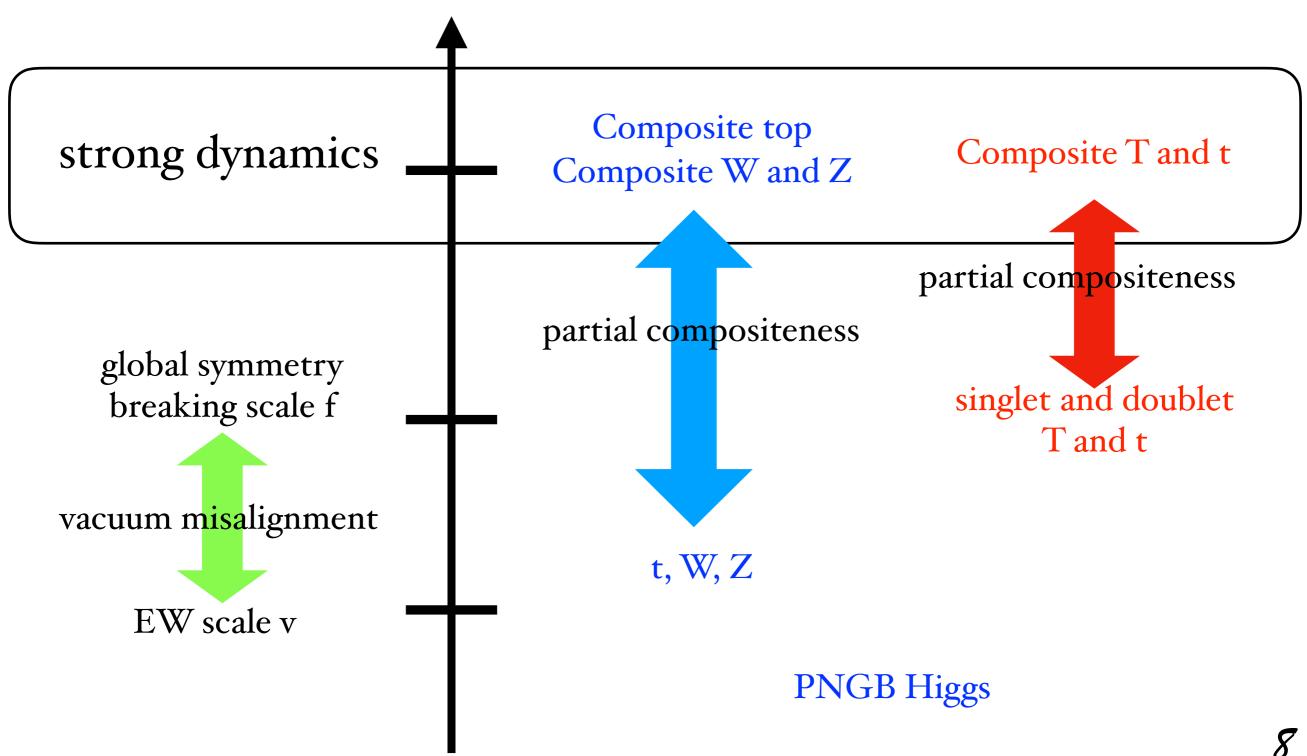
$$\xi \equiv \frac{v^2}{f^2} \simeq 1 - \frac{m_{\widetilde{q}}^2}{y^2 f^2}$$

Further including the finite part will not change the result

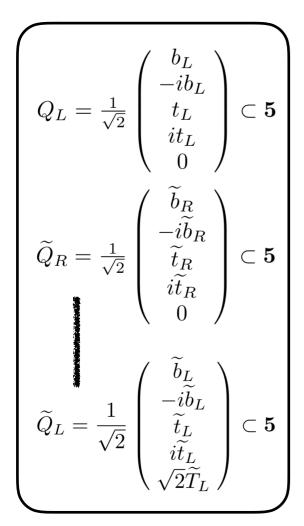
Spectrum of Minimal Setup

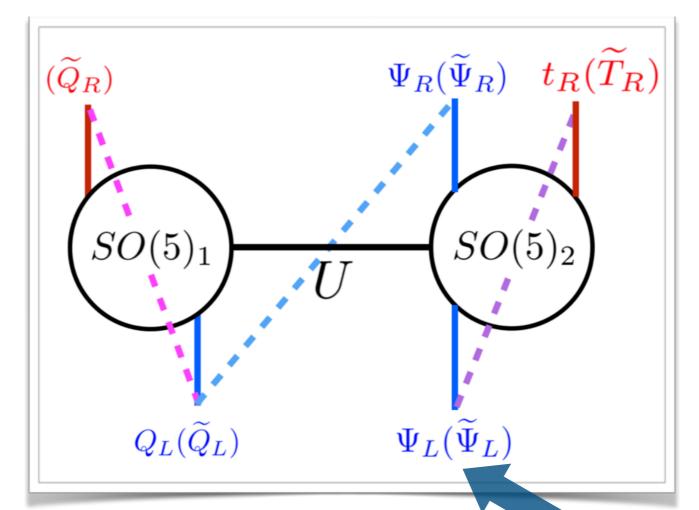


Composite/Holographic Extension



Two-site Construction



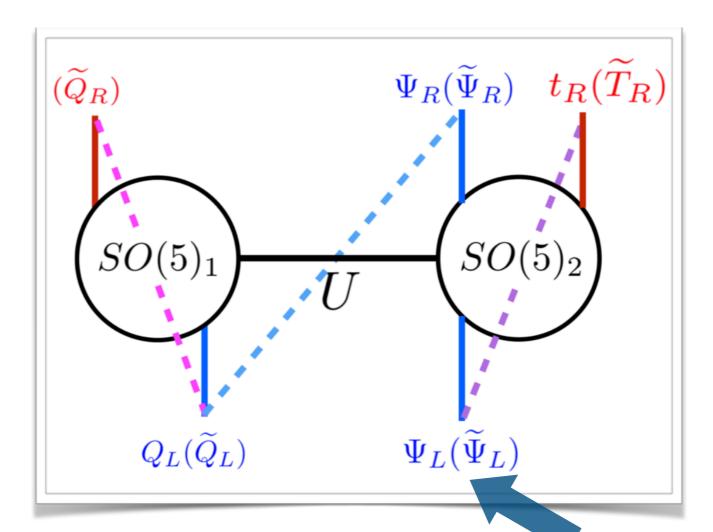


 $t_R \subset \mathbf{1}$ $\widetilde{T}_R \subset \mathbf{1}$

composite states

Two-site Construction

$$egin{aligned} Q_L &= rac{1}{\sqrt{2}} egin{pmatrix} b_L \ -ib_L \ t_L \ it_L \ 0 \end{pmatrix} \subset \mathbf{5} \ \widetilde{Q}_R &= rac{1}{\sqrt{2}} egin{pmatrix} \widetilde{b}_R \ -i\widetilde{b}_R \ \widetilde{t}_R \ i\widetilde{t}_R \ 0 \end{pmatrix} \subset \mathbf{5} \ \widetilde{Q}_L &= rac{1}{\sqrt{2}} egin{pmatrix} \widetilde{b}_L \ -i\widetilde{b}_L \ \widetilde{t}_L \ i\widetilde{t}_L \ \sqrt{2}\widetilde{T}_L \end{pmatrix} \subset \mathbf{5} \ \end{aligned}$$



 $\widetilde{T}_R\subset \mathbf{1}$

composite states

collective breaking: explicit breaking SO(5)2

$$\mathcal{L} = yf\bar{Q}_L U\Psi_R - M\bar{\Psi}_L \Psi_R - m\bar{\Psi}_L^{(1)}t_R$$
$$+ \tilde{y}f\bar{\tilde{Q}}_L U\tilde{\Psi}_R - \tilde{M}\bar{\tilde{\Psi}}_L \tilde{\Psi}_R - \tilde{m}\bar{\tilde{\Psi}}_L^{(1)}\tilde{T}_R - \tilde{m}_q\bar{\tilde{Q}}_L \tilde{Q}_R + \text{h.c.}$$

Holographic Setup for SM Top

Fermions living in the bulk

$$\xi_{q} = \begin{bmatrix} (2,2)_{L}^{q} = \begin{bmatrix} q'_{L}(-+) \\ q_{L}(++) \end{bmatrix} & (2,2)_{R}^{q} = \begin{bmatrix} q'_{R}(+-) \\ q_{R}(--) \end{bmatrix} \\ (1,1)_{L}^{q}(-+) & (1,1)_{R}^{q}(+-) \end{bmatrix}$$

$$\xi_{t} = \begin{bmatrix} (1,1)_{L}^{t}(--) & (1,1)_{R}^{t}(++) \end{bmatrix}$$

Holographic Setup for SM Top

Fermions living in the bulk

$$\xi_{q} = \begin{bmatrix} (2,2)_{L}^{q} = \begin{bmatrix} q'_{L}(-+) \\ q_{L}(++) \end{bmatrix} & (2,2)_{R}^{q} = \begin{bmatrix} q'_{R}(+-) \\ q_{R}(--) \end{bmatrix} \\ (1,1)_{L}^{q}(-+) & (1,1)_{R}^{q}(+-) \end{bmatrix}$$

$$\xi_{t} = \begin{bmatrix} (1,1)_{L}^{t}(--) & (1,1)_{R}^{t}(++) \end{bmatrix}$$

Zero modes as the low energy building blocks

$$Q_L=rac{1}{\sqrt{2}}\left(egin{array}{c} b_L\ -ib_L\ t_L\ it_L\ 0 \end{array}
ight)\subset {f 5}$$

Holographic Setup for SM Top

Fermions living in the bulk

$$\xi_{q} = \begin{bmatrix} (2,2)_{L}^{q} = \begin{bmatrix} q'_{L}(-+) \\ q_{L}(++) \end{bmatrix} & (2,2)_{R}^{q} = \begin{bmatrix} q'_{R}(+-) \\ q_{R}(--) \end{bmatrix} \\ (1,1)_{L}^{q}(-+) & (1,1)_{R}^{q}(+-) \end{bmatrix}$$

$$\xi_{t} = \begin{bmatrix} (1,1)_{L}^{t}(--) & (1,1)_{R}^{t}(++) \end{bmatrix}$$

Zero modes as the low energy building blocks

$$Q_L=rac{1}{\sqrt{2}}\left(egin{array}{c} b_L\ -ib_L\ t_L\ it_L\ 0 \end{array}
ight)\subset {f 5}$$

• Breaking SO(5) on the IR brane

$$\mathcal{L} \supset \frac{m}{g_5^2} \overline{(1,1)_L^q} (1,1)_R^t (z_{IR} = L_1) + \text{h.c.}$$

Otherwise Higgs is an exact Goldstone boson

Holographic Setup for Neutral Tops

Fermions living in the bulk

$$\xi_{\widetilde{q}} = \begin{bmatrix} (2,2)_L^{\widetilde{q}} = \begin{bmatrix} \widetilde{q}_L'(-+) \\ \widetilde{q}_L(++) \end{bmatrix} & (2,2)_R^{\widetilde{q}} = \begin{bmatrix} \widetilde{q}_R'(+-) \\ \widetilde{q}_R(--) \end{bmatrix} \\ (1,1)_L^{\widetilde{q}}(++) & (1,1)_R^{\widetilde{q}}(--) \end{bmatrix}$$

$$\xi_{\widetilde{T}} = \begin{bmatrix} (1,1)_L^{\widetilde{T}}(--) & (1,1)_R^{\widetilde{T}}(++) \end{bmatrix}$$

Zero modes as the low energy building blocks

$$\widetilde{Q}_L = rac{1}{\sqrt{2}} \left(egin{array}{c} \widetilde{b}_L \ -i\widetilde{b}_L \ \widetilde{t}_L \ i\widetilde{t}_L \ \sqrt{2}\widetilde{T}_L \end{array}
ight) \subset {f 5}$$
 $\widetilde{T}_R \subset {f 1}$

UV brane construction

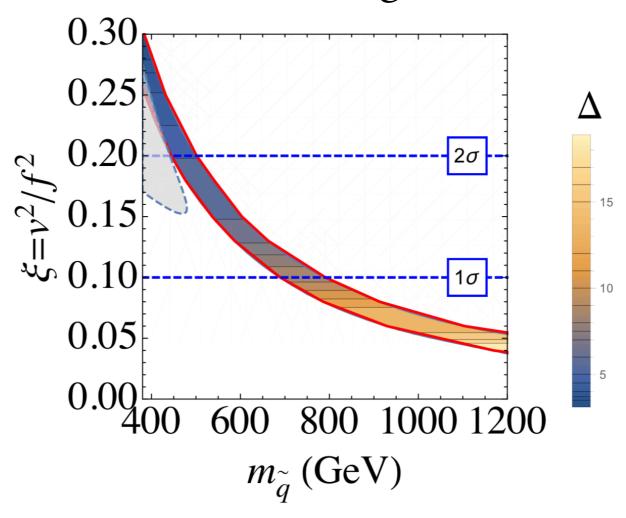
$$\widetilde{Q}_R = rac{1}{\sqrt{2}} \left(egin{array}{c} \widetilde{b}_R \ -i\widetilde{b}_R \ \widetilde{t}_R \ i\widetilde{t}_R \ 0 \end{array}
ight) \subset {f 5} \qquad \qquad {\cal L} \supset -rac{\widetilde{m}_q}{g_5^2} \; \overline{\widetilde{q}}_R \; \widetilde{q}_L(++) \; (z_{UV} = L_0) + {
m h.c.}$$

Breaking SO(5) on the IR brane

$$\mathcal{L} \supset \frac{\widetilde{m}}{g_5^2} \overline{(1,1)_L^{\widetilde{q}}} (1,1)_R^{\widetilde{T}} (z_{IR} = L_1) + \text{h.c.}$$

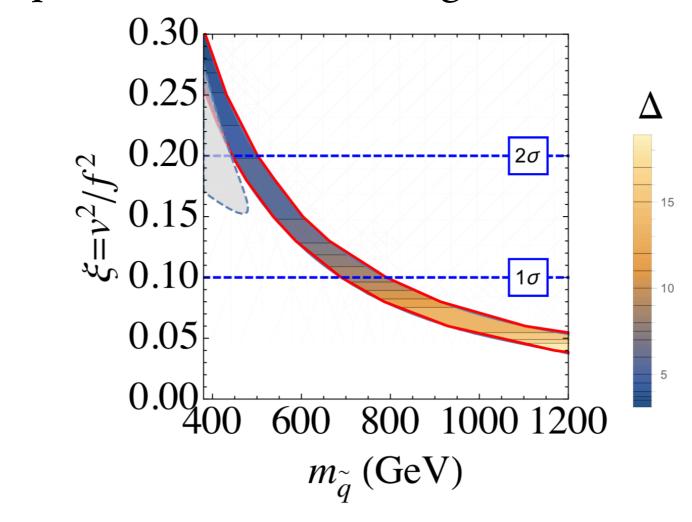
Phenomenology

Only two free parameters at low energies



Phenomenology

Only two free parameters at low energies



Rich Phenomenology to be done in the future
 dark hadron spectra, heavy composites phenomenology,
 dark matter candidate, collider signatures and cosmological implications...

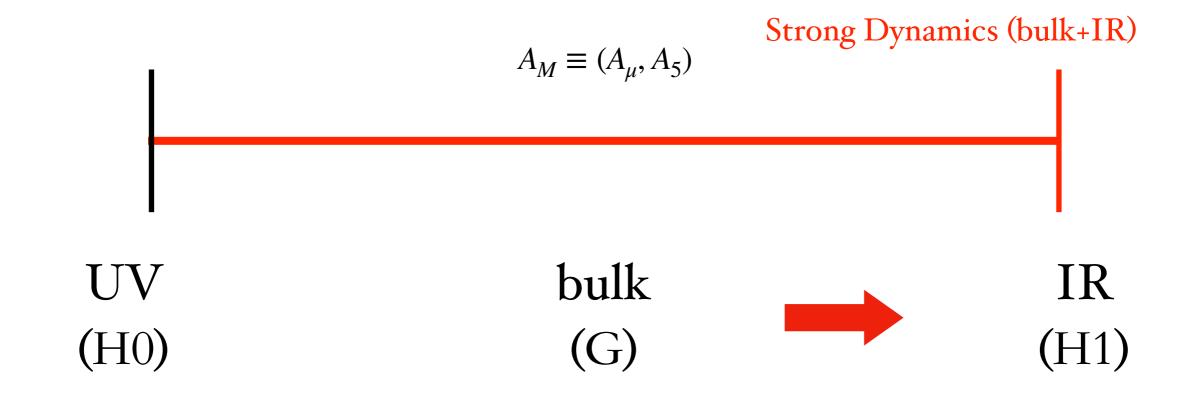
Concluding Remarks

- We present a neutral naturalness model with the Higgs boson identified as a PNGB of SO(5)/SO(4)
- Vacuum misalignment naturally obtained with only fermions
- UV realization in the holographic/composite Higgs framework
- Finite Higgs potential in holographic/composite framework

still many to explore in the future!

Backup Slides

Symmetry Breaking in 5D

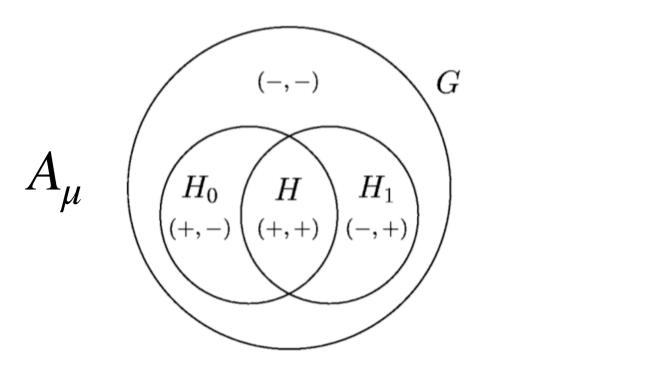


realistic model: G: SO(5)

H1: SO(4)

H0: $SU(2) \times U(1)$

Boundary Conditions



G:SO(5)

H1: SO(4)

H0: $SU(2) \times U(1)$

The boundary condition (+,+) reflects the fact that W, Z are massless before EWSB

$$U = \begin{pmatrix} \mathbf{1}_{3 \times 3} & & & \\ & c_h & s_h \\ & -s_h & c_h \end{pmatrix}$$

 $U = \begin{pmatrix} \mathbf{1}_{3\times3} & & \\ & c_h & s_h \\ & -s_h & c_h \end{pmatrix}$ 5D perspective: the Goldstone matrix corresponds to the Wilson line of A5 along the fifth dimension

Strong Dynamics at Low Energies

$$\mathcal{L}_{\text{eff}} = \bar{t}_{L} \not p \Pi_{t_{L}} t_{L} + \bar{t}_{R} \not p \Pi_{t_{R}} t_{R} - (\bar{t}_{L} \Pi_{t_{L} t_{R}} t_{R} + \text{h.c.})$$

$$+ \tilde{L} \not p \tilde{\Pi}_{L} \tilde{L} + \tilde{R} \not p \tilde{\Pi}_{R} \tilde{R} - (\tilde{L} \tilde{\Pi}_{LR} \tilde{R} + \text{h.c.})$$

$$\tilde{L} = \begin{pmatrix} \tilde{t}_{L} \\ \tilde{T}_{L} \end{pmatrix} \qquad \tilde{R} = \begin{pmatrix} \tilde{t}_{R} \\ \tilde{T}_{R} \end{pmatrix}$$

Information of heavy particles encoded in form factors

$$\Pi_{t_L t_R} = \frac{iyf}{\sqrt{2}} s_h \frac{Mm}{p^2 - M^2}$$

$$\widetilde{\Pi}_{LR} = \begin{pmatrix} \widetilde{m}_q & \frac{-i\widetilde{y}f}{\sqrt{2}} s_h \frac{\widetilde{m}M}{p^2 - \widetilde{M}^2} \\ 0 & \widetilde{y}f c_h \frac{\widetilde{m}M}{p^2 - \widetilde{M}^2} \end{pmatrix}$$

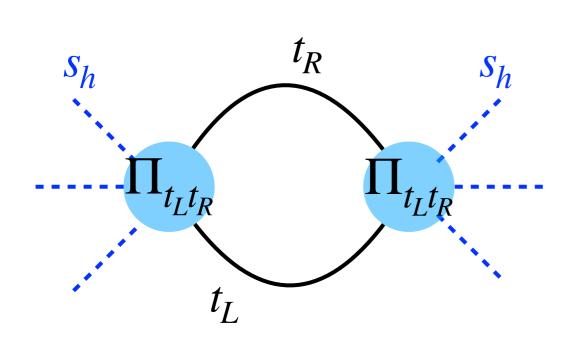
$$\Pi_{t_L t_R} = \frac{i \Pi_{LR}(m)}{\sqrt{2}} s_h$$

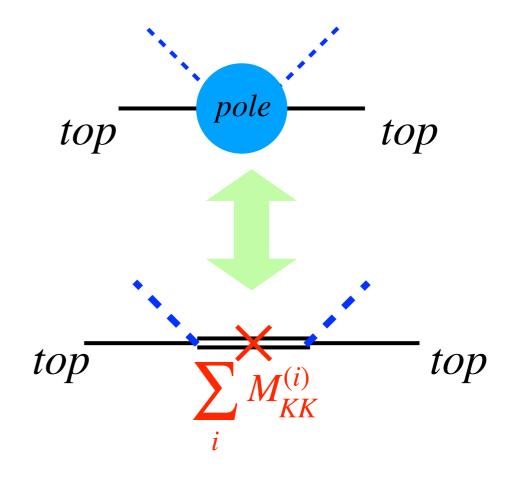
$$\widetilde{\Pi}_{LR} = \begin{pmatrix} \widetilde{m}_q & -\frac{i}{\sqrt{2}} \widetilde{\Pi}_{LR}(\widetilde{m}) s_h \\ 0 & -\widetilde{\Pi}_{LR}(\widetilde{m}) c_h \end{pmatrix}$$

- Identical to the spectrum of the minimal setup
- Explicitly check: Higgs is an exact Goldstone if all the mixings vanish

Higgs Potential in Composite Models

$$V(h) = -\frac{2N_c}{16\pi^2} \int dQ^2 Q^2 \log \left[\Pi_{t_L} \Pi_{t_R} \cdot Q^2 + |\Pi_{t_L t_R}|^2 \right]$$
$$-\frac{2\widetilde{N}_c}{16\pi^2} \int dQ^2 Q^2 \operatorname{Tr} \left\{ \log \left(1 + \frac{\widetilde{\Pi}_{LR} \widetilde{\Pi}_R^{-1} \widetilde{\Pi}_{LR}^{\dagger} \widetilde{\Pi}_L^{-1}}{Q^2} \right) + \log \left(1 + (\widetilde{\Pi}_L - \widetilde{\Pi}_{L0}) \widetilde{\Pi}_{L0}^{-1} \right) + \log \left(1 + (\widetilde{\Pi}_R - \widetilde{\Pi}_{R0}) \widetilde{\Pi}_{R0}^{-1} \right) \right\}$$





The contribution of the whole tower of Kaluza-Klein states has been resummed