NON-DESTRUCTIVE 2-D BEAM PROFILE MONITOR USING GAS SHEET IN J-PARC LINAC

-overview & hardware construction-

<u>J. Kamiya</u>, N. Ogiwara, Y. Hikichi, Y. Yamada (Vac. Gr.) K. Okabe, A. Miura, K. Moriya (Mon. Gr.) M. Kinsho

J-PARC / Japan Atomic Energy Agency

Contents

- **Gas-sheet monitor overview**
- **Gas-sheet monitor for J-PARC LINAC**
 - Design
 - Vacuum system
 - 2-D image observation
- **D** Towards real image observation

D Summary

Concept of 2-D beam image monitor using gas distributed in sheet shape "Gas-sheet monitor"

Charactarictics & Merits

Concept

• Non destructive for beam:

Possible to work during the user operations.

Also non-destructive for monitor.

Reaction between beam & sheet shaped molecules in a plane:

2-D beam image is obtained at an unique position.

Non-passive gas injection:

Optimizable for many beam condition.

 Simple system (gas inlet line, vacuum pumps, vacuum gauges, gate valves, detectors) : Few special devices make costs lower.

Gas-sheet monitor over view **Strategy for research & developments**

3

Gas-sheet monitor over view Gas sheet generation

- Passing through a slit with very thin (~0.1 mm) and long aperture, gas molecules ejected with directivity (beam effect)
- By optimizing the aperture shape of the slit, the flat and thin distribution of the gas density within the wide area would be obtained.
- Redundant gas, which is injected but finally cut to form the gas sheet, was differentially pumped out.

N. Ogiwara, IPAC'16

distribution with a prototype slit

4

Gas-sheet monitor over view Detection technique (ions)

- Gas sheet is generated passing through beam trajectory with an angle.
- Ions, which is the gas molecules ionized by beam, are expelled to the MCP by the electric field.
- Amplified electrons by MCP make the phosphor screen fluorescent.

Prototype Detector composition for the ion detection

Relation between observed and real scale

Gas-sheet monitor over view Beam images

Proton beam at RCNP, Osaka Univ.

Energy: 10 MeV, Current: 5µA at max, DC

Detection of the beam position change

Detection of the beam shape change (focus-defocus) 6

Gas-sheet monitor @J-PARC LINAC

- Installed in L3BT (LINAC to 3-GeV Synchrotron Beam Transport Line): 400 MeV, H⁻
- Slit size: 160 mm^w × 170 mm^h, 0.1 mm^t, 110 mm between up and down slits.
- Gas species N₂ (based on actual performance in energy of 10 MeV, stable for ion pumps, intense luminescence)
- Designed mainly for ion detection, but possible for trial to photon detection.

J-PARC LINAC gas-sheet monitor Concept of the vacuum system design

If the vacuum design is poor,

- Large background pressure makes S/N for the gas sheet worse.
- Injected gas makes the beam line pressure increase.

Vacuum design concept

Maintenance of the monitor takes long time.

Poor monitor performance.

ex) Cavity discharge, long machine-stop period, etc.

Injected gas for the gas sheet should be pumped out in the monitor chamber or nearby.

- Maintenance for only the gas-sheet monitor should be performable.
- Additional system should be consistent with the existence LINAC vacuum system.

J-PARC LINAC gas-sheet monitor Vacuum system

Pumping system

- Cryo-pump as main: Largest pumping speed with an aperture.
- Turbo molecular pump (TMP) as differential pumping in the beam line: To suppress the pressure increase at the upstream cavity.

Maintenance

- Beam line gate vales (GV): To purge only the chamber of the gas-sheet monitor.
- TMP as backup pump: To ensure UHV even in the main pump trouble case.

Consistency with the existence system

- B-A gauges (BAG) up/down-stream of GV
- FL-net: Link all the information with the existence system.

Gas injection line

J-PARC LINAC gas-sheet monitor System overview

J-PARC LINAC gas-sheet monitor Pressure distribution estimation

<u>Purpose</u> Confirm that the injected gas does not make a harmful effect on the beam line, especially cavity.

J-PARC LINAC gas-sheet monitor Pressure distribution estimated result

<u>Pressure increase by the injected gas (ΔP from the static pressure)</u>

Injected gas has negligible effect on pressure in the cavities.
 ΔP is in the order of only 10⁻⁷ Pa or less through all the beam line .

J-PARC LINAC gas-sheet monitor Measured beam line pressure

Measured beam line pressure when the gas flow was increased.

■ No harmful effect by the gas injection on the beam line pressure

J-PARC LINAC gas-sheet monitor Trial beam profile measurement

Beam condition

Energy: 191 MeV Beam current: 5-50 mA Repetition: 2.5 Hz Macro bunch width: 100 μm chop: no-chop For the first trial, the condition, in which ions are generated as many as possible, are selected.

No beam loss signal increase during the test. →Surely, non-destructive.

J-PARC LINAC gas-sheet monitor Observed image

Observed "raw" image

Among 60 fps, those synchronized with the 2.5 Hz beam shows the beam image.

Diameter of Phospher screen (used for scale calibration) Beam cross-sectional shape (interaction with gas sheet)

Beam trace (interaction with residual gas)

J-PARC LINAC gas-sheet monitor Beam profile analysis

Image analysis

- Flames synchronized with the 2.5 Hz beam was manually selected and averaged in the software.
- Gas-sheet angle to the beam was corrected.

Beam cross-sectional shape

Towards the real beam image observation

Ion detection "Image observed. But, is it real image?"

- Gas density distribution in the gas sheet 📫 Measurement method under development
- Electric field by repeller, grid , MCP
- - Depending on calculation & this workshop Difficult to trace back to real beam image.

- Electric field by beam potential
 - "Make things simpler."

Photon detection

- No effect by electric field. " $\Box asy?$,
- Small cross-section for fluorescence.

Low energy experiment, where the cross-section is larger, is ongoing.

- Electron beam experiment @JAEA Lab. site.
- Proton measurement at 10 MeV @RCNP, Osaka Univ.

J-PARC beam: pros & cons

- Higher energy: Lower cross-section.
- Vast number of protons: large fluorescence.

I. Yamada, PASJ'18

Electron beam 3 keV Atmosphere gas 10⁻⁴ Pa (N₂) Detector: Image intensifier

This Oct., we will see some results...

17

- 2-D beam image monitor using gas sheet is under developing with comprehensive strategy.
- The gas-sheet monitor as a R&D application for the J-PARC LINAC beam was constructed.
 - □ Improved gas-sheet generator was designed.
 - Ion detection technique, which was demonstrated in low energy test, was applied.
 - Vacuum system was carefully constructed based on the concept to obtain both high performances for monitor and accelerator.
- 2-D image of LINAC beam was observed by detecting ions.
- Developments towards the reliable beam image observation by photon detection is ongoing.