Research and development of high radiationresistant superconducting magnet based on REBCO coated conductors

Masami IIO

Cryogenics Section, J-PARC Cryogenics Science Center, KEK

1 /31

Contents

1. Introduction

2. Superconducting solenoid system for high intensity muon source

3. R&D Items

- 3. 1. Neutron irradiation
- 3. 2. Feasibility study of mineral insulated coil
- 3. 3. Development of demonstration magnet

4. Summary

Contents

1. Introduction

2. Superconducting solenoid system for high intensity muon source

3. R&D Items

- 3. 1. Neutron irradiation
- 3. 2. Feasibility study of mineral insulated coil
- 3. 3. Development of demonstration magnet

4. Summary

Future accelerator magnets

FCC@CERN: 100 TeV

- 20 T class high-field magnet
 - → Absorbed Dose: 100 MGy?

J-PARC MLF 2nd Target station

- Solenoid covering production target
 - → Absorbed Dose: <u>130 MGy???</u>

Conventional Magnet Technology

- NbTi Cable
 - → T=5 K with heat load reaching 650 W? due to nuclear heating
- Organic Material for Insulation
 - → Degradation of the machine strength from 10 MGy

Development of next-generation radiationresistant high field magnet has been awaited

Key technologies 1

1. REBCO coated conductor

- ► <u>High temperature margin</u> (T_c=93 K)
 - Conduction cooling operation in the temperature range of 20 K

- High magnetic field tolerance of Ic
 - Potential for 20T class high field magnet

Key technologies 2

- 2. Mineral insulation by Ceramic coating & bonding
 - ► High radiation tolerance of mechanical strength
 - Better thermal conductivity
 - MgO:59, Al₂O₂:32, SiO₂:10 >> EP resin:0.3 [W/m·K @300K]
 - Close to the coefficient of thermal expansion of cable

Research and development of mineral insulated superconducting magnets are in progress using REBCO coated conductors

Contents

1. Introduction

2. Superconducting solenoid system for high intensity muon source

3. R&D Items

- 3. 1. Neutron irradiation
- 3. 2. Feasibility study of mineral insulated coil
- 3. 3. Development of demonstration magnet

4. Summary

COMET muon source (5 T-class solenoid)

➤ In case of the recent muon source, the production target is equipped in a solenoid magnet → High radiation resistance is required

- -OD of cryostat: 2.3 m
- Length of cryostat: 6.5m
- Weight of cryostat: 45 t
- Peak field at target: 5 T
- Proton beam power: 56 kW
- Weight of Radiation shield
 - : ~40 t (W-alloy + Cu)
- Absorbed dose: ~1 MGy
- Nuclear Heating: 191 W

Compact muon source

Design study of muon source like COMET system using REBCO was performed

Al-Shell Double Pankeke REBCO coil Pure Al-Disc Vaccum Vessel Iron Yoke 341 **Tungsten Shield** Proton Beam **Production Target Magnetic Field** Distribution (Unit: Tesla) 4.54 3.89 3.24 2.59 1.95 1.30 0.65

Ref.: Y. Yang et al 2015 IOP Conf. Ser.: Mater. Sci. Eng. 101 012054

PARAMETERS	VALUE	
T _{Operating}	20 K (Conduction cooling)	
Peak field on target	5 T	
Conductor / Cable	REBCO / W=4 mm, T=0.1 mm	
I _{Operating} / Load factor	100 A / 40 %	
Coil type	Double pancake solenoid	
No. of turns per layer	277	
Total No. of coils	34	
Coil dimension	ID=340 mm, T=42 mm, L=9 mm	

- 1. Size Reduction : $\frac{1/100}{100}$ (W= 45 t \rightarrow 0.43 t)
- 2. High Temperature Margin: $T_{max} = 21.6 \text{ K} < T_{c} = 59 \text{ K}$ (Heat deposit by radiation: 0.48 W/kg > COMET case)
- 3. High Magnetic Field?: 5 T (39%), 10 T (78%)

R&D of Radiation Resistant HTS Magnet

Neutron irradiation

→ REBCO, MgB₂, MI-Cu tape, BT-GFRP

Feasibility study of mineral insulated coil

- → Ceramic coating to REBCO tape (Al₂O₃, SiO₂ ...)
- → Ceramic coating to magnet materials
- → Coil winding with the ceramic bond

Development of small-scale conduction cooled demonstration magnet

- → Customization of pulse tube Cryocooler
- → Assembly, cooling and excitation test

Contents

- 1. Introduction
- 2. Superconducting solenoid system for high intensity muon source
- 3. R&D Items
 - 3. 1. Neutron irradiation
 - 3. 2. Feasibility study of mineral insulated coil
 - 3. 3. Development of demonstration magnet
- 4. Summary

Neutron irradiation effect on Ic of REBCO Tape

How is the radiation tolerance of REBCO tape?

M. Eisterer, RESUMM2017.

There are some research activities

Purpose of our irradiation test

- Confirmation of phenomena
- Increase of data (Dose, Temperature, Applied Field)

Test scheme

Inter-university cooperative research program

International Research Center for Nuclear Materials Science, Institute for Materials Research, (IMR-Oarai) Tohoku University

Superconducting Properties Evaluation System @IMR-Oarai

BR2 @Belgian nuclear research center

Temperature Range	4 ~ 80 K	
Max. Current	500 A	
Max. External Field	15.5 T	

Current status of neutron irradiation

<u>Irradiated samples at BR2 in FY2016</u>

- 2 capsules (It returned in FY2017)
- \rightarrow HTS (SCS4050-AP) x10, BT-GFRP x3
- → Neutron fluence: 1.80x10²², 8.37x10²² n/m² (En>0.1 MeV, T< 100 °C)
- → Equivalent dose of HTS: 150, 650 mSv/h (Distance: 0.5 m)

Irradiated samples at BR2 in FY2017

- 2 capsules (It will return in FY2018)
- → HTS: SCS4050-AP x5 & FYSC-SCH04 x5, BT-BFRP x3
- \rightarrow Neutron fluence: 1×10^{22} , 5×10^{22} n/m² (En > 0.1 MeV, T< 100 °C)

Irradiated samples at BR2 in FY2018 (Shipped soon)

- 2 capsules (It will return in FY2019)
- → HTS: SCS4050-AP x5 & FYSC-SCH04 x5, MgB2 x3, BT-BFRP x3, MI-Cu
- → Neutron fluence: $1x10^{21}$, $5x10^{21}$ n/m² (En > 0.1 MeV, T< 100 °C)

We are preparing for PIE (post irradiation examination)

Commissioning of VTI for 15.5 T magnet

Electrod(+

Commissioning of the evaluation system has been performing with un-irradiated sample

High purity Al rod

Voltage taps

Buttom view

CERNOX-CU

Commissioning of VTI and 15.5 T magnet

Confirmed Items

- Transport current of 500 A with external field of 0 T and 6 T
- Stable temperature control of sample holder up to 77 K
- Critical current measurement of HTS sample up to 77 K
- ➤ Demonstration of new HTS sample holder (//c) under Lorentz force (8 T, 300 A)

PIE (post irradiation examination) of HTS samples will start soon

Contents

- 1. Introduction
- 2. Superconducting solenoid system for high intensity muon source
- 3. R&D Items
 - 3. 1. Neutron irradiation
 - 3. 2. Feasibility study of mineral insulated coil
 - 3. 3. Development of demonstration magnet
- 4. Summary

Trials of ceramic coating

ITEMS	1ST TRIAL	2ND TRIAL	
Base material	AI (AI-123 Mg4.5Mn0.7), Cu (Cu-OF R1337), SS (L-No6X5CrNi18-9), REBCO (SCS4050-AP)		
Coating material	G-92-5 (NIKKEN .Ltd)		
Coating material	$Al_2O_3 : SiO_2 = 1:3$	$Al_2O_3 : SiO_2 = 1:1$	
Target thickness	50 μ m	30 μm, 20 μm, 10 μm	
Final heat treatment	180°C, 20 min	100° C, 20 min	

Coating Process

Spraying → **Drying** → **Spraying** → **Drying** ... → **Final heat treatment**

Thickness control

1st trial results of metal plates

- ➤ Withstand voltage: > 2000 [V]
- ➤ A few cracks layer was observed (Withstand voltage: 700 [V])

The target film thickness should be smaller

Cross-cut test & Withstand voltage test

A	AI .	Cu		SS	
Film Thickness	Cross-cut	Film Thickness	Cross-cut	Film Thickness	Cross-cut
30.9 μm	Class 0 (100/100)	37.4 μm	Class 0 (100/100)	30.5 μm	Class 0 (100/100)
18.3 μm	Class 0 (100/100)	18.9 μm	Class 0 (100/100)	21.6 μm	Class 0 (100/100)
10.3 μm	Class 0 (100/100)	12.6 μm	Class 0 (100/100)	11.7 μm	Class 0 (100/100)
Film Thickness	Withstand voltage	Film Thickness	Withstand voltage	Film Thickness	Withstand voltage
44.7 μm	> 2000 V	44.9 μm	> 2000 V	53.8 μm	> 2000 V
28.3 μm	600 V	38.6 μm	1000 V	37.6 μm	1300 V
16.8 μm	400 V	22.4 μm	400 V	22.3 μm	300 V
8.5 μm	300 V	8.7 μm	200 V	11.5 μm	300 V

There was no peeling of one piece of ceramic layer

Cross-section observation of HTS tape (1st Trial)

SCS4050-AP (SuperPower)

Several cracks were observed

There is no crack in the 2nd trial with the target film thickness of 30 - 10 mm and the final heat treatment temperature of 100 °C.

Withstand voltage test

Withstand voltage test by point probe is performed for evaluation of insulation. The load is applied with an AC voltage with a frequency of 50 Hz.

0.20

0.18

− t= 38 μm → t= 24 μm → t= 16 μm

Withstand voltage

 \rightarrow t=16 µm : 0.679 kV

 \geq t=24 μ m : 2.006 kV

 \rightarrow t=38 μ m : 2.693 kV

Critical current measurement in LN₂ Bath

- ➤ Final heat treatment: 180°C for 20 minutes
- Thermal cycle:
 - > 10 times (R.T.⇔ 77 K)

This coating is workable method for realizing the mineral-insulated superconducting magnets

Contents

- 1. Introduction
- 2. Superconducting solenoid system for high intensity muon source
- 3. R&D Items
 - 3. 1. Neutron irradiation
 - 3. 2. Feasibility study of mineral insulated coil
 - 3. 3. Development of demonstration magnet
- 4. Summary

Coil fabrication plan

Ongoing R&D activities

- Ceramic coating to long REBCO tape
- Optimization of coil structure

Coil winding (wet-winding)

Double pancake type race track coil

We are planning two cooling and excitation tests

Single coil test in conduction cooling system

Pulse tube cryocooler customaized for high radiation environment

ltem	Standard	Modification
2nd Stage Capacity	0.9 W @ 4.2 K	10 W @ 20 K
Cooling storage material	Magnetic materials	Bi
Sleeve	PTFE	Polyimide
O-ring	NBR (nitrile rubber)	1111A

HAYAKAWA RUBBER http://www.hrc.co.jp/product/wpcivil/radiation/

Prototype of radiation-resistant magnet system

- 1. Customized pulse tube cryocooler
- 2. Thermal anchor of bus bar with AIN
- 3. HTS current lead
- 4. Mineral indurated REBCO coil

Test Items

- > Temperature control up to 80 K
- Excitation test up to 500 A in self field

High field test with common coil configuration

Test facility for A15 subscale magnet

For backup field

- Nb₃Sn coil x2
- (Nb₃Al coil x2)

New development

MI-Double pancake racetrack coil based on REBCO

Excitation test at high field of 15 T in Liq. He bath

4. Summary

Summary

- KEK has been performing R&D of radiation-resistant magnet based on REBCO coated conductors.
- As the results of the design study, great advantage on thermal performance of REBCO based muon source was confirmed.
- Neutron irradiation of REBCO tape and magnet materials at IMR-Oarai is ongoing. PIE of REBCO samples will start soon
- In the trials of the ceramic coating target thickness of 30 μm is optimum in consideration of the withstand voltage higher than 2 kV and the cracking of layer. This ceramic coating is workable method for realizing the mineral-insulated magnets.
- After R&D of the coating to the long tape and the wet-winding technique by stack sample fabrication, Double pancake coils will be wound with the ceramic coating agent.
- Preparations for single coil test in conduction cooling system and high field test with common coil configuration with Liq. He bath are ongoing.

Collaborators

M. IIO^{a,b}, M. Yoshida^{a,b}, Y. Yang^c, T. Nakamoto^{a,b}, K. Suzuki^b, M. Sugano^{a,b}, and, T Ogitsu^{a,b} *aJ-PARC*, *bKEK*, *cToshiba*

Acknowledgments

Neutron irradiation has been performing under the inter-university cooperative research program of the <u>International Research</u> <u>Center for Nuclear Materials Science</u>, <u>Institute for Materials Research</u>, <u>Tohoku University</u>.

This work was supported by JSPS KAKENHI Grant Number JP16H06008, JP18KK0087 and U.S.-Japan Science and Technology Cooperation Program.

Thank you

Appendix

Key Technologies for Radiation-Resistant Coil

- Minimization of nuclear heating
 - Lightweight coils have an advantage in reducing energy deposition by radiation
 - → Al-stabilized cable
- Minimization of radioisotope generation
 - Bath cooling could cause liquid helium activation (Tritium production)
 - → Conduction cooling method

Coils are cooled with small amount of Liq. He through Al-strips

Ceramic coating

- Selection conditions of coating agent
 - 1. Electrical insulation
 - 2. Thermal conductivity (AIN:150, AI_2O_2 :32, SiO_2 :10 >> EP resin: 0.3) [W/m·K]
 - 3. Coefficient of linear expansion
 - 4. Temperature of heat treatment

Degradation of Critical Current by Heat Treatment

Sample:SCS4050-AP Ic average: 118 A

517LT vs 1111A

