DE LA RECHERCHE À L'INDUSTRIE

OVERVIEW OF LTS AND HTS ACTIVITIES AT CEA-PARIS SACLAY

Helene Felice for the Superconducting Magnet Lab at CEA

Special thanks to: M. Durante, P. Fazilleau, C. Lorin, T. Lecrevisse, A. Madur, D. Simon, E. Rochepault

www.cea.fr

4 MATERIALS

NbTi

Accelerator magnets for LHC MQ **MQYY**

Other Accelerator Magnet

SARAF

SuperFRS

MRI magnet: ISEULT

Special magnet WAVE: neutron diffraction=> condensed matter physics

Nb₃Sn

FRESCA 2

Technology development

Dipole and Quad for FCC

 MgB_2

HTS => ReBCO

For accelerator magnets **EUCARD**

EUCARD2

LOTUS: radio isotope production

Conductor characterization

For high field magnets

PAGE 2

4 MATERIALS

NbTi

Accelerator magnets for LHC MQ **MQYY**

Other Accelerator Magnet

SARAF

SuperFRS

MRI magnet: ISEULT

Special magnet WAVE: neutron diffraction=> condensed matter physics

Nb₃Sn

FRESCA 2

Technology development

Dipole and Quad for FCC

 MgB_2

HTS => ReBCO

For accelerator magnets **EUCARD**

EUCARD2

LOTUS: radio isotope production

Conductor characterization

For high field magnets

PAGE 3

FAIR, THE SUPER-FRS AND ITS SUPERFERRIC **DIPOLES**

FAIR: on-going construction

- Superferric magnets~ 15 m³
- 18 + 3 standard dipoles
- 3 special dipoles

FAIR = Facility for Antiproton and Ion Research in Darmstadt, Germany

Super-FRS: Superconducting-FRagment Separator

- Technical specification by CEA
- FAIR call for tender
- ELYTT ENERGY Contract with Elytt
- Contract follow-up by CEA
- Tests at CERN

LHe vesel

Thermal shield

Vaccum chamber

SUPER-FRS SUPERFERRIC DIPOLE PARAMETERS

Conductor	value
Material	NbTi
Bare conductor width [mm]	1.97
Bare conductor height [mm]	1.17
Insulation material	PET braid
Insulation thickness [mm]	0.13
Strand diameter [mm]	0.715
Filament diameter [mm]	0.065
Cu/SC ratio	11
RRR	>80
Minimum current at 4T, 4.22K	660

	: : :	
1000	× × × × × × × × × × × × × × × × × × ×	
	1 008-	

COIL	value
Nb turns	560
Nb layers	28
Nb turns per layer	20
Average turn perimeter [m]	6.576

Margins: 57%; 2	2. <i>1</i>	n
-----------------	-------------	---

Superferric dipoles	D3	D2	D3Y
Quantity	18	3	3
Field @ center: B _z (0,0,0) [T]	1.6	1.6	1.6
Field integral: I _z [T.m]	3.40	3.84	3.40
Bending angle: q [°]	9.75	11	9.75

- Mock ups ongoing
 1st of series expected in 2019
 End of production foreseen in 2021

NBTI MAGNETS FOR HL-LHC: MQYY

MQYYM: MQYY short model

Within CERN-CEA collaboration

Aperture	90 mm
Physical length	1350 mm
Magnetic length at 1.9 K	1204 mm
Outer diameter	360 mm
Bare cable width	8.8 mm
Bare cable thickness	0.77/0.91 mm
Kapton Insulation thickness at nominal	0.080 mm
Short sample current	5980 A
Operating Gradient	120 T/m
Operating current	4550 A
Bpeak at operation	6.42 T

MQYY prototypes (MQYYP) within QUACO

Based on a design study carried out at CEA (M. Segreti)

- Selection of 4 companies to design and manufacture MQYY prototypes(competitive process 4/3/2 in conceptual/engineering/manufacturing phase)
- Starting point:
 - CEA magnetic design
 - Mechanical design is NOT provided
- Phase 3: first of a kind manufacturing => ongoing

MQYYM FABRICATION

- Technical spec by CEA, orders placed by CERN
- Procurement follow-up by CEA
- Assembly at CERN with a CEA/CERN team in Feb/March 2019

H. Felice
D. Simon
S. Perraud
M. Segreti
J.M. Rifflet
JM Gheller
D. Bouziat

Magnetic measurements will be performed using a CERN system

NBTI MAGNETS FOR HL-LHC: MQYY

2015 Mi 2018 End of 2020

PHASE 1 Concept. design

PHASE 2 Engineering design

PHASE 3 Manufacturing

Company D

antec •

Company C

Company D

SIGMAPHI

D. Simon S. Perraud J.M. Rifflet E. Rochepault

NBTI MAGNETS FOR LHC: MQ SPARES

Within CERN-CEA collaboration

- Replenishment of MQ spare magnets stock => 6 magnets
- CEA responsible for:
 - ✓ Rebuild of the manufacturing folder
 - ✓ Preparation of the technical specification
 - Production follow-up at the manufacturer

· Contract signed with TESLA in

Call for tender and order placed by

Conductor	NbTi
Gradient	223 T/m
Current	11.9 kA
Magnetic	3.1 m
length at 1.9 K	

Key difficulty:

september 2018

To make identical magnets more than a decade after the series production

- To resuscitate CAD models
- To update the drawings with present ISO norms

- Test of the 6 MQ spare magnets at CEA Paris Saclay
 - Upgrade of the test facility
 - Lambda plate allowing for 640 mm diameter magnet
 - Up to 5 m long magnet

C. Lorin J.M. Rifflet S. Roux J.M. Gheller H. Allain

DIPOLE BLOCK DESIGN FOR EUROCIRCOL

Within the ECC program => CEA Saclay in charge of the double aperture block-type configuration

SS shell

AI 7075

Aperture	50 mm	
I _{op}	10176 A	
LL margin HF	14.0 %	
B _{bore}	16 T	
B _{peak} HF	16.7 T	
σ_{x} / σ_{VM}		
RT loading	-147 / 136 MPa	
Cool-down	-180 / 165 MPa	
Excitation	-185 / 167 MPa	

3D magnetic model

- Design Study ECC
- Fabrication experience with FRESCA2

FRESCA2

F. Rondeaux

Keys •

Pusher Pole Coil

DIPOLE MODEL TOWARD FCC

CERN-CEA collaboration agreement to design and fabricate a single aperture block model at CEA

⇒ FCC Flared-ends Dipole Demonstrator: F2D2 => as close as possible to ECC

Conductor parameters	HF	LF
Strand diameter	1.1 mm	0.7 mm
Cu/nonCu ratio	0,8	2
Jc at 4.2 K and 16 T	1200 A/mm2	
Cable number of strands	21	34
Unreacted bare cable width	12.579 mm	
Unreacted bare cable thickness	1.969 mm	1.253 mm
HT cable thickness dim. change	4.6 %	4.5 %
HT cable width dim. change	1.3 %	
Reacted bare cable width	12.74 mm	
Reacted bare cable thickness	2.06 mm	1.31 mm
Insulation thickness at 50 MPa	0.150 mm	

2D magnetic parameters	
I _{op}	10469 A
LL margin HF	14.0 %
LL margin LF	15.4%
B _{bore}	-15.54 T
B _{peak} HF	16.20 T
B _{peak} LF	11.85 T
b ₃ at nominal	2.98
b ₃ at injection	-14.80
b ₅	-0.50
b ₇	-2.98
b ₉	-1.46

H. Felice

E. Rochepault

V. Calvelli

M. Durante

P. Mallon

DIPOLE MODEL TOWARD FCC

FRESCA2

- Btw coil 1-2 and 3-1 for coil 3-4
- Toward the aperture for coil 1-2
- High complexity due to grading
- Baseline scenario: external joints

Key challenge: Coil and tooling

engineering design

Objectives: fabricate and assemble F2D2

at CEA

NB₃SN MAGNET TOWARD FCC FCC MQ (I)

Within CERN-CEA collaboration

- In CEA tradition => design study of main quadrupole for FCC
- Design study:
 - · 2 layer versus 4 layer designs?
 - Margin of the quadrupoles?

- Reduce complexity of the quad vs the dipoles => 2 layer quad
 - 20 % margin (instead of 14 % for the dipoles)
- Nominal gradient of 360 T/m

- Conductor definition
 - Small aperture => cable windability is a concern

CABLE PARAMETER FCC quad (v12	
Strand diameter 0.85 mm	
Cu/NonCu	1.65
Nb of strands	35
Cable bare width (before/after HT)	15.956/16.120 mm
Cable bare mid-thick.(before/after HT)	1.493/1.538 mm
Cable width expansion 1.0 % (ECC)	
Cable thickness expansion	3.0 % (ECC)
Keystone	0.40°
Insulation thickness per side (5 MPa)	0. 150 mm

MAGNET PARAMETER	Values
Nominal current	22500 A
Peak field	10.52 T
Gradient	367 T/m
Loadline margin	20.0 %
Temperature margin	4.6 K

NB₃SN MAGNET TOWARD FCC FCC MQ (II)

MAGNET PARAMETER	Unit	Values
Nominal current	Α	22500
Peak field	Т	10.52
Gradient	T/m	367
Stored energy (2 apertures)	kJ/m	520
Azimuthal force (per ½ coil)	kN/m	1740
Radial force (per ½ coil)	kN/m	780

Support structure: Self supported collar

Modeled in Cast3M in 4 steps (in MPa)

Collaring	Stress relaxation	Cold	Powering
peak	peak	peak	peak
average	average	average	average
-101.5	-91.4	-88.5	-111.1
-85.5	-76.9	-73.2	-69.7

ProtectionTiina Salmi TUT

Use of a CLIQ Unit Hot spot temperature < 350 K (ECC)

4 MATERIALS

NbTi

Accelerator magnets for LHC MQ MQYY

Other Accelerator Magnet

SARAF

SuperFRS

MRI magnet: ISEULT

WAVE: neutron diffraction=> condensed matter physics

Nb₃Sn

FRESCA 2

Technology development

Dipole and Quad for FCC

 MgB_2

HTS => ReBCO

For accelerator magnets EUCARD

EUCARD2

LOTUS: radio isotope production

Conductor characterization

For high field magnets

PAGE 15

HTS ROAD MAP

HTS HIGH FIELD R&D OVERVIEW

Detection/Protection

Detection difficult due to very low propagation velocities during a quench.

Protection not easy due to very high energy margin (high Tc)

 Numeric Magnet Safety System, more accurate and faster (FPGA)

Remove/replace insulation between turns:

NOUGAT project

 # HTS insert HTS with
 Metal-as-insulation
 winding

Stability/Homogeneity

Degradation of stability/homogeneity due to screening currents generation

- Guillaume Dilasser PhD

- Internal R&D
- # experimental/numerical study of different techniques (overshoot,

Mechanics

Issue for very high-field magnets

(> 30 T)

Ex : JBr > 1000 MPa $J=500 \text{ A/mm}^2$, B = 40 T, r=5 cm

- MI winding co-wound tape is a strong mechanical reinforcement
- M. ALHarake PhD: mechanical study of non impregnated windings at very high fields

GOAL: 10 T HTS INSERT IN 20 T RESISTIVE OUTSERT

- 4 years project (oct 2014 -2018)
- Fundings from French National Research Agency (lead LNCMANR)
- Collaborative project with CNRS Grenoble (LNCMI, Neel institute)

- Double pancakes, 6 mm-w ReBCO
- Metal-as-Insulation winding
- Prototypes (1 SP, 2 DP), codes (current dynamics...)
- 9 DP, ~ 2 kms of conductors

2 DP proto tests

6.93 T + 20 T res

VonMises > 800 MPa

Validation of fabrication, assembly and testing techniques and mechanics

NOUGAT insert tests (9DP)

First phase (2018)

12.8 T + 8 T res

Second phase (2019)

@10 T+20 T res VM # 500 MPa

TOWARD HTS ACCELERATOR MAGNETS: EUCARD

Stainless-steel pole (316L)	al coil	Top coil		Demountable mechanical structure (316L)
			Pads (316L	
End shoes (316L)	Bo	Iron po	le	000000
Glass epoxy in	ter-coil and exte	rnal insulation	0 0 0	

PARAMETER	Built Magnet	Unit
# of turns central coil layer 1	30	turns
# of turns external coils layer 2	24	turns
# of turns external coils layer 3	10	turns
Engineering current density	235	A/mm ²

TOWARD HTS ACCELERATOR MAGNETS: EUCARD

Nominal current	Α	2800
Central field wo / w SCIF	Т	5.4 /
(screening current induced		4.7
field)		
Temperature	K	4.2
Stocked energy	kJ	12.5
Inductance	mΗ	3.2
Temperature margin	K	29
Load line margin	%	47

- Tested at CEA Paris Saclay and reached 5.4 T 130 mm
- Next step: insertion of EUCARD in FRESCA2
 - Preparation is ongoing

M. Durante

F. Borgnolutti

P. Fazilleau

T. Lecrevisse

Phase 2 | PAGE 20

TOWARD HTS ACCELERATOR MAGNETS: EUCARD2 COS[®]

	Unit	Cosθ	In FRESCA 2
lop	kA	10.06	7.1
Вор	Т	5	2.6 + 13
Ic	kA	15.2	7.9
LL margin	(%)	34	10
T margin	K	30	8
Bore radius	mm	24	16

- Roebel cable 12 x 1.0 mm², 15 tapes, 300 mm twist pitch
- 2x125µm insulation, fiberglass
- 17 turns

Practice yoke

stacking

Dummy coil with SS Roeble cable

Practice assembly

- Magnet assembly by Summer 2019
- Standalone test in INFN LASA Sept 2019
- Test in FRESCA2 under discussion

M. Durante C. Lorin

IN SUMMARY

- A wide range of fields
- A wide range of magnet sizes
- Strong implication with industry
- Fabrication capability from NbTi to Nb₃Sn and REBCO in house
- **Key objectives in near and mid term future**
 - Complete and test: EUCARD2, MQYYM, EUCARD+FRESCA2
 - Complete and test MQ and MQYYP
 - Complete Super-FRS dipoles with Elytt
 - Develop technological options for FCC dipole model
 - Proceed with HTS development:
 - Internal R&D
 - ongoing preparation of collaboration agreement on HTS between CEA and **CERN**

