Jan. 21-23, 2019 at KEK, Ibaraki, Japan

Present status of RE-123 superconducting wire development at SSTC

Yutaka Yamada

Shanghai Superconductor Technology Co. Ltd., SSTC and Shanghai Jiaotong University

Jan. 22, 2019 at KEK, Ibaraki, Japan

2017. April, Joined SSTC in Shanghai

Not far from Japan.

Shanghai HTS International Conference (2018.8.15-17)

Shanghai HTS Conference, ShHTS, (2018.8.15-17)

Panel Discussion: The Future of 2G-HTS Wire and Application+ Prospects of China and World

Background: Since R&D achievements in long cc tape fabrication and APC(Artificial Pinning Center), over 10 years have passed. Now it seems for us to need one more influential result to commercialize, to make a large market, and to activate conferences. So now come questions.

Questions

- 1. At this moment, what do you think is the most important or necessary R&D from your long experience and perspective? And why?
- 2. Wire side: How much can you reduce the price of CC? How large market do you need?

 (There are many demands for the price reduction in the application industry.)
- 3. Wire side: Can you cooperate with each other? If so, under what conditions? (eg. for a large project, but with a limited time)
- 2'. Application side: What is the most promising applications? And what is the quantity of CC needed?
- 3'. Application side: How can we get the funds for R&D?

 Only traditional "governmental route" or there is other possibility in your country?
- 4. What do you expect from China in terms of HTS R&D, application and business? To do so, what is required?

(China has 1.4 billion population, vast land, and the largest electric power consumption.)

Panel Discussion

SSTC tour : Prof. Larbalestier and others discussing with our colleagues

Introduction of SSTC and Recent Activity

About Shanghai Superconductor Technology Co., Ltd

上海超导科技股份有限公司(上海超電導(株))

founded in 2011

Members:70~80

strong collaboration with SJTU (Shanghai Jiaotong Univ.)

Research Institute of Superconductivity (RIS)

• PhD of Cambridge U.

Materials Applications Professor Zhijian Jin Professor Yutaka Yamada ⊙ SJTU Smart-grid Center VP Former Senior Researcher at ISTEC. Japan **Dr Yue Zhao Professor Zhiyong Hong** ⊙ Shanghai Oriental/P.J. Scholar Shanghai Oriental/P.J. Scholar PhD of Demark Tech. U. ⊙ PhD of Cambridge U. Dr Xiaofen Li Dr Zhuyong Li Research Fellow Research post-doc PhD of Houston University PhD of Chonnam U. **Dr Linpeng Yao** Dr Wei Wu Research post-doc Research Fellow • PhD of Qsing Hua U. **Dr Zhen Huang Dr Zhiwei Zhang** Associate Research Fellow Research Fellow

• PhD of Cambridge U.

Graduate Profile

- 4 professors, 5 post-docs, 20+ PhDs
- Most projects involve collaboration between company and university
- 20+ full time technical engineers at SST for the development of research work

Production Line: IBAD+PLD

Independent Design and Manufacturing

- Substantial cost reduction (manufacturing/maintenance/upgrade)
- Improved yield (70%) through beneficial interactions between optimization of production process and equipment upgrades

Product Line and Specifications

Polishing

R2R RF Magnetron Sputtering

R2R IBAD

R2R HTRF Magnetron Sputtering

R2R PLD

R2R DC Magnetron Sputtering

Slitting Machine Continuous Electroplating

Continuous Lamination

Customizable Parameters	Reference Values		
Substrate Thickness	50 μm		
Width	2-10 mm		
Piece Length	Up to 300 m		
	Self-field	Ic (77 K, s.f.): Up to 500 A/cm-w	
Critical Current	In-field	Ic (30 K, 5 T): Up to 550 A/cm-w (B //c)	
		Ic (4.2 K, 10 T): Up to 1000 A/cm-w (B//c)	
Copper Stabilizer	Surround coating, 5-35 µm per side		
Lamination Material	Copper / Stainless Steel		
Lamination Thickness	50-125 μm per side (25 μm increment)		
Joint Resistance	25 nΩ·cm²		
Allowable Transversal Stress (LN2)	400 MPa / 1.1 GPa		
Others	Tailored to specific requirements		

High Speed Ic Measurement by Mcorder

~800A >150m/hr Short waiting time Thick tape acceptable

- Blue and Red lines represent data collected by inductive measurements;
- Yellow dots indicates data collected by transport measurement.

Quality Control (cont.)

Total thickness ~90 µm Cu thickness 20–21 µm Width 10mm

Three-dimensional Measurement by Infrared Beams (Designed by SST)

SEM image of a tape cross-section (left) and surface of HTS layer (right)

- Microstructure
- Superconductivity
- Dimensions
- Electro-mechanical properties

Superconducting Properties

Texture Quality of Buffer Layer

With CeO₂ structure

CeO₂/LMO/MgO/Y₂O₃/Al₂O₃/C276

Lot. No.	In-plane texture(°)	out-of-plane texture(°)
1	2.4	1.7
2	2.4	1.8
3	2.4	1.7
4	2.5	1.7
5	3.0	2.0
6	2.9	1.8
7	2.8	1.7
8	3.8	2.1
9	2.8	1.8
10	2.6	1.7
11	2.6	1.7
12	2.9	1.9

Without CeO₂ structure

LMO/Epi-MgO/IBAD-MgO/Y₂O₃/Al₂O₃/C276

LMO/IBAD-MgO/Y₂O₃/Al₂O₃/C276

Long Tape Production: Continuous effort to improve I_c and homogeneity

- YGd→Gd, Eu
- Heating

,,,,,

Hastelloy

Monitoring

Buffer

- Improving the process and materials
- Stable long tape production of 300-500 m piece length

High Field Low Temperature Performance (KEK)

上海超导 SHANGHAI SUPERCONDUCTOR

2017 Data

Critical Current Measurement of Commercial REBCO Conductors at 4.2K

K. Tsuchiya @ High Energy Accelerator Research Organization (KEK Japan)

350 300 250 lc (A) 18 T, 4.2 SuperPower-CF 200 SuperPower-AP SuperPower-AP-low 150 SuperPower-AP-sp Fujikura-SCH04 SuNAM 100 SuperOx SWCC 50 AMSC Shanghai SC 200 50 100 150 250 300 350 Ic (A) self, 77 K

Fig. 6. I_c values of the REBCO conductors measured at 4.2 K and 18 T versus I_c of the same conductor measured at 77 K and under the self-field condition.

Fig. 5. Transport I_c for 4-mm-wide conductors versus B for commercial conductors in perpendicular fields at 4.2 K. The estimated errors of the I_c values are less than 2–3%.

High Field Low Temperature Performance (KEK)

2017 Data

Critical Current Measurement of Commercial REBCO Conductors at 4.2K

K. Tsuchiya @ High Energy Accelerator Research Organization (KEK Japan)

Fig. 7. n-Value versus *B* for commercial conductors in perpendicular fields at 4.2 K.

Fig. 8. *B* dependence of lift factor, $I_c(B, 4.2 \text{ K})/I_c(\text{self, 77 K})$, for various commercial REBCO conductors.

High Field Low Temperature Performance (NHML)

Comparison transport $I_c(4.2K, B)$ for ReBCO tapes from different manufacturers Bruker production line tapes show higher $I_c(4K, B)$ then SuperPower R&D tapes Shanghai SC tapes show $I_c(4K, B)$ comparable to SP tapes used for 42T insert

High field data from magnet time Jan. 18-20, 2017

I_c improvement at lower temp. at high-field

Low-temperature, in-field I_c determined by lift factor Lift Factor= $I_c(T, B)/I_c(77K, s.f.)$

L.F. measured by Transport method values are consistent with those calculated by magnetization method (Bean model)

Transport Ic were measured by RRI,KEK and NHMFL

Enhancement of low temperature & in-field Ic

Comparison transport $I_c(4.2K, B)$ for ReBCO tapes from different manufacturers Bruker production line tapes show higher $I_c(4K, B)$ then SuperPower R&D tapes Shanghai SC tapes show $I_c(4K, B)$ comparable to SP tapes used for 42T insert

The R&D is done in our production line, which is easily transferred to the products.

Lamination Technique

Improving Stability of Electro-Mechanical Properties

China Southern Power Grid 160 kV / 2 kA SFCL **Budget: ~50 million CNY for 4 years**

检测数值:

测试样 品号	77K, 0MPa	77k,拉伸至 450MPa Strain	77K,拉伸至 450MPa lc at 450MPa
1	691A	2854×10 ⁻⁶	674A
2	699A	2826×10 ⁻⁶	682A

30μm thick Hastelloy for High J_e

Conductor

I_c=170A/4mm@77K, 0T

Cu15µm each side

Je=671A/mm2 at 77K, 0T Cu5 μ m each side J_e =988A/mm² at 77K, 0T

Ag 1μm each SC 2μm Others ~0.3μm

assumed ~560A/4mm@4K, 10T

CC for Applications begin to be broadly used in China

Summary

✓ 2G HTS wires at SST:

- 77K, s.f. /_c (100-200 A/4mm-w) and 4.2K, 10T /_c (>400 A/4mm-w)
- 30μm Hastelloy high Je tape
- Advanced lamination and jointing processes
- Strong R&D cooperation with the university

✓Outlooks:

- Higher Performance & Lower Price
- Stable supply
- High in-field I_c , High J_e , composite conductors, advanced jointing techniques

Production Capability

2018 S1 1 PLDs 15km/month 70% yield

>120 km/year |

2019

3 PLDs or more >50 km/month 80% yield

>500 km/year

END