

Accelerator Magnets

S. Gourlay **US Magnet Development Program LBNL**

Outline

- Overview Where are we now?
- Conductors and magnet technology
- Advantages and Potential of HTS
- Threats and Opportunities/Opportunities and Threats
- Reducing Threats and Increasing Opportunities
- Moving Forward Next Steps

Status of conductors

Snapshot of Conductor and Magnet Technology

LTS

- 27 km of Nb-Ti accelerator magnets at near operational potential
- First Nb₃Sn accelerator magnets to be installed in LHC
- LHC Quads on the way
- High field solenoids
- Fusion magnets

HTS

- MgB₂ links for LHC upgrade
- Power cable demos
- Power leads
- EuCard-2 dipole
- Beam deflecting magnet
- > 1 GHz NMR magnets
- And 32T solenoid!
- Several active R&D programs

Much work on materials (Bi-2212, REBCO, and some on IBS) but very few examples of accelerator magnets so far

LTS is not perfect

- Let's say that Nb-Ti technology is maxed out.
- What are the challenges with Nb₃Sn?
 - Max operating field 16T or less for accelerator magnets
 - Lots of training
 - Strain sensitivity
 - Does not consistently reach short sample (see "training")

This is what we are facing right now. What are the possibilities for the **Next Generation?**

Early Activities in HTS

- At time of discovery of HTS, SSC was in full R&D mode
 - Excitement generated by HTS almost derailed the project but was short-lived – it died anyway . . .
- Emphasis shifted to power transmission
 - \$20M/yr for several years in US
- Work continues on motors, generators, FCL, NMR, ... But only recently has there been any serious work on accelerator magnets

HTS Potential for Accelerator and other Magnets

- General Advantages . . .
 - High Field

These are some of the elements of the new paradigm

- High J_c
- High stability
- Large thermal margin at low temp no training?!
- Can operate in forced-flow helium gas at 20 30K, greatly reducing the complexity and cost for operation

High critical-temperature superconductors - background

Two primary HTS materials with sufficient maturity

- REBCO tapes (main focus for Fusion)
 - Current densities an order of magnitude higher than LTS
 - Has achieved fields over 40 T in solenoids
 (X2 over target for high field designs)
 - No heat treatment required
 - Good strain properties
- Bi-2212 round strands
 - High current density
 - High current cable
 - Complex heat treatment
 - Strain sensitive
 - Possible use in pulsed systems

•Operating temps at 20 – 30K

HTS Properties Comparison

compared to Nb₃Sn

	Bi-2212	ReBCO
Process	High temperature, high pressure reaction	Pre-reacted Tape
Scalability	Rutherford cables	Roebel, CORC®, Twisted Stack (Still in development stages)
Winding	Existing methods	Таре
Field Orientation	Isotropic	Anisotropic*
Mechanical Properties	Poor	Relatively good

^{*}Progress in reducing anisotropy and development of round wires mitigate the problem

The Conductor Competition

- With few exceptions all accelerator magnets use Rutherford-style cables
 - Multi-strand reduce strand length, fewer turns (lower inductance)
 - High current density (J_{coil} ~ 600 1,000 A/mm²)
 - Precise dimensions controlled conductor placement (field quality)
 - Current redistribution stability
 - Fine filaments (5 40 microns)
 - Twisting to reduce interstrand coupling currents (field quality)

Threats to Applications for HTS

Potential comes with some disadvantages

Technical

- Quench Detection and Magnet Protection
- Manufacturability
- Magnetization
- Subject to Degradation (REBCO)
- Strain Sensitivity
- Cryogenics

"Circle of Death"

Acceptance/Marketability

High Cost

There are Challenges but Still Reasons and Ways to Move Forward

- HEP is still the major driver of accelerator magnet development*
- HTS is the only option for accelerator magnets with fields above 16T
- Opportunity to be non-conventional. For example, Quench Detection and Magnet Protection
- Despite the current high cost, I believe there is huge potential for significant cost reduction. Especially REBCO and some in Bi-2212.

*See also Threats

High Field Arc Magnets are Challenging

Consider the FCC

- 16 20T Dipoles (more than twice operating field of LHC)
- Synchrotron radiation (high field magnets and smaller ring)
 - Current LHC is 0.2 W/m/beam
 - For 16T/100 km 28.4 W/m/beam for a total heat load of 4.8 MW
 - For 20T/80 km 44.3 W/m/beam for a total heat load of 5.8 MW

If this load is falling directly on the magnet cold masses working at 1.9 K/4.5 K, the corresponding total electrical power to refrigerators is

- -> 4.3/1.1 GW for FCC-hh 100 km
- -> 5.2/1.3 GW for FCC-hh 80 km

L. Tavian, CERN

CERN baseline is currently 100km/16T/1.9K

Interaction Region Quads/Dipoles have their own challenges

- Debris from interaction region at detectors generates enormous radiation induced <u>heat loads</u> and high radiation dose of magnet components
- Mitigation includes larger bore (higher field on the conductor)
 - Intercept less energy or add shielding inside magnet bore

Some Threats/Opportunities

From a HEP perspective

 Is there any new physics to warrant another big machine? Still possible for LHC Energy upgrade (LHC-HE). In fact, this could be the best case

But . . .

- Still no sign of new physics at LHC
- Near-term focus is on Higgs (e+e-) and neutrinos.
 - Not much demand for next-gen magnets except specialty magnets
- Not much help so far from outside HEP
 - The usual suspicion and reluctance to use superconductivity. Hard to crack the market. See the last 100 years for LTS and last 30 for HTS
- Another reason to look at applications outside HEP in addition to development drivers

Opportunities to Break the Circle (The Timing is Good!)

- Taking advantage of accelerating development rate and new applications on the horizon. -> non-linear progress
- Performance improvements
 - Higher current density with APC at low temperatures
 - Reduced anisotropy
- Active magnet R&D programs on the verge of demos that will stimulate the environment
- Fusion Energy Sciences moving back to some technology development

Biggest obstacle to progress is access to conductor in quantity

Opportunities in Fusion

- Fusion Energy Sciences Technology Advisory Committee (FESAC)
 subpanel on Transformative Enabling Capabilities (TEC)
 - A large number of topics examined including HTS for high field, high operating temp magnets for magnetic confinement fusion
 - Report just completed and is now available on the FESAC webpage: https://science.energy.gov/fes/fesac/reports/
 - HTS was chosen as one of four "Tier 1" TECs. "Most Promising"
- Performance goals common with HEP will increase opportunities
 - High current cables under high stress conditions

MIT and Commonwealth Fusion Systems (CFS) announced a new approach to fusion energy based on REBCO superconducting magnets

ARC – affordable, robust, compact SPARC – smallest possible ARC

Courtesy
J. Minervini, MIT

- CFS is a private company spun out of MIT; it has announced \$50M in private financing and raising more
- MIT and CFS will collaborate closely to demonstrate large-bore, high-field REBCO magnets in ~3 years
- If successful, they will then build SPARC, a ~100MW net energy device, in following ~4
 years

SPARC is a net-energy tokamak using REBCO magnets

- Compact: $R_0 < 2m$
- High-field: $B_0 \sim 12T$, $B_{max} \sim 21T$
- Fusion power: 100 MW
- Net-energy: Q>2
- Pulsed: 10+ seconds

SPARC technical mission:

- Demonstrate break-even fusion energy production
- Demonstrate fusion-relevant REBCO magnets at scale
- Demonstrate high-field fusion plasma scenarios for ARC

SPARC strategic mission:

- Rapidly bootstrap to fusion energy as fast as possible
- Reinvigorate fusion energy efforts and provide urgency
- Enable parallel efforts in complementary fusion R&D

SPARC is small enough to be built:

- By the MIT, CFS, and partnering teams in <5 years
- Within precedent of several other tokamaks
- With existing or near-term technology
- Leveraging existing MIT infrastructure for speed

Potentially Big Boost for REBCO

The focus is solely on REBCO.

- They will need about 60,000 kA*m over the next few years to build one full TF coil. If the machine is built, they will need 18 TF coils (note: specs for kA*m for 700 A/mm^2 @ 20T, 20 K).
- An ARC size device will require many times that amount.

Increasing the Opportunities and Eliminating the Threats

Quench Detection and Magnet Protection

- Still a tough nut to crack
 - Have to deal with success
 - Higher current density increases energy that may exceed the coil's heat capacity add more copper?
- Several solutions close to demo that could provide early detection key to magnet protection.
 - Primary element of the new paradigm
- But . . . Totally different environment
 - The only reasons for an HTS magnet to quench is because it exceeded its critical current or temperature increase due to cryo failure or beam induced heat load.
- However, cryo failure gives sufficient warning and transient beam induced heat loads are probably not enough to initiate quench – unless it's catastrophic (then you're screwed)
- Another mitigation might be to have rather poor cooling, allowing more time to detect the quench

Creating a New Paradigm

- Look to near term demos of technology feasibility to help create/drive a sustainable market.
 - Development of high current cables is critical
 - Explore magnet geometries
 - Provide platforms for Quench Detection concept development
- Other applications outside HEP/Fusion (ion sources, undulators, gantries, solenoids, NMR, 25T solenoids for x-ray and neutron facilities . . . and wind turbines
- Upshot
 - Development of a new enabling capability is key to adoption of any new technology (regardless of cost)
 - Stop worrying about cost and make more magnets!

What's Next?

- Hybrids
 - Difficult to separate forces (insert from outsert)
 - Combined lose higher temperature option
 - Compact geometries like CCT are a natural fit for Bi-2212
- Start to think about all HTS accelerator magnets
 - Active program to develop magnet technology
- Continue to improve cost/performance

Moving forward with REBCO in HEP

- Special applications could benefit
 - High temperature operation
 - High field
- Rethink quench protection philosophy
- High current cables a necessity
 - Apply some of the No-Insulation coil techniques to cables?
- Cost is a continuing concern
 - Need a market
 - Indirectly we can demonstrate viability of REBCO for magnets
 - Disruptive processing technology?

Improving Cost/Performance

- High current cables with current sharing
 - Allows use of tapes with defects
 - Increases thermal stability
 - Increases effective piece length
 - Strengthened Bi-2212
- Ultimate goal is to have highest current density in coil pack
 - \circ J_c
 - → J_e of tape

(Mostly regarding REBCO)

- J_e of cable
- Reduce anisotropy
- Increase coil packing fraction

Moving Forward – concentrate on positives and mitigation of negatives

- The number of activities developing REBCO accelerator magnets is growing
- We absolutely need to build magnets!
 - Emphasis on development of high current cables
 - Handle the magnetization effects
 - Geometries that can effectively utilize tapes/cables from tapes

LARP* Racetrack Quad Reduces Energy Deposition

Nb₃Sn LHC IR Quad

N.V. Mokhov, et al. Phys. Rev. ST Accel. Beams 18, 051001 (2015)

*LHC Accelerator Research Program

Nb₃Sn Prototype Performed Well

Favorable geometry for tape

EuCARD-2 "Feather" Insert

5T, 40mm aperture accelerator quality demonstrator to produce 17 – 20 Tesla when inserted into FRESCA-2 (100 m bore)

G. Kirby, et al., IEEE Transactions on Applied Superconductivity, Vol. 25, No. 3, June 2015

BNL 20T Hybrid Design and Insert Tests

10T Nb₃Sn Common Coil for inset tests

Gupta, et al., Proceedings of IPAC15

Stacked Tapes and CORC® Canted-Cosine Theta (CCT)

Develop insert testing infrastructure using 10T CCT

U.S. Magnet Development Program X.Wang, LBNL

What is Driving the Field Forward?

- Some talk of 7.5 TeV with 11T (Nb₃Sn) lattice inserts
- HE-LHC still buzzing 20T (Hybrids or all-HTS?)
- FCC ee, hh
- CepC, SppS
- Nuclear Physics in the US Electron Ion Collider
 - IR's, high heat loads in some areas
- High Intensity Neutrino Sources?
- Special applications, e.g. high heat loads, high operating temperature, cryogen-free

Our new role?

- We are neither the chicken nor the egg.
- In the process of fulfilling program needs we demonstrate feasibility with the hope of creating a market we can leverage.
 - We need to pay more attention to the latter by working closely with industry and university partners.
- Fusion program could help with cost and development. On parallel paths in some areas.

Collaboration is Key

- In the context of a future high energy pp collider collaboration is essential.
- We should not fear competition, we should embrace it.
- The best way to win?

Run faster!