

Real-Time-Evolution of Heavy-Quarkonium Bound States

Alexander Lehmann

Department of Mathematics and Physics University of Stavanger

Institute for Theoretical Physics Heidelberg University

work in collaboration with A. Rothkopf

Heavy Quarkonia in Heavy Ion Collisions

Heavy Quarkonia in Heavy Ion Collisions

Heavy Quarkonia in Heavy Ion Collisions

- Heavy Quarkonia (Charmonium, Bottomonium) are well controlled experimental and theoretical probes for the quark-gluon-plasma
- Phenomenological models describe quarkonium supression via a Schrödinger equation + assumption of early formation of bound states

Heavy Quarkonia in Heavy Ion Collisions

- Heavy Quarkonia (Charmonium, Bottomonium) are well controlled experimental and theoretical probes for the quark-gluon-plasma
- Phenomenological models describe quarkonium supression via a Schrödinger equation + assumption of early formation of bound states
- Characterized by a separation of scale:

$$M_Q \gg M_Q v \gg M_Q v^2 \gg \Lambda_{\rm QCD}$$

Very heavy states, e.g. Υ(1S), already bound Coulombically

 M_Q ... heavy quark mass ($m_{Bottom} = 4.18(3)$ GeV [PDG 2017])

... relative velocity in centre of mass frame ($v_{Bottom}^2 \approx 0.1$)

... momentum scale below which gluons strongly interacting

Mv ... typ

... typical momentum

... typical kinetic or potential energy

 Mv^2

Heavy Quarkonia in Early Stages in HICs

Early dynamics of heavy quarkonium in HIC largely unexplored

Heavy Quarkonia in Early Stages in HICs

Early dynamics of heavy quarkonium in HIC largely unexplored

Rule of thumb via uncertainty relation: $\tau_{form} \sim 1/E_{\rm bind} \approx 0.2 \dots 0.4 {\rm fm/c}$

Can we find hints for heavy-quarkonium formation in the glasma?

Real-Time Evolution of the Gauge Fields

Real-Time Evolution of the Gauge Fields

Vital insight into glasma dynamics via classical statistical simulations of gauge fields in expanding geometry

In this study **Hamiltonian evolution** in axial gauge, formulated in spatial links and electric fields (Leapfrog) in a non-expanding box

$$\partial_t U_j(x,t) = iE_j^a U_j(x,t) \qquad \partial_t E_j^a(x,t) = -2\mathrm{Im}\mathrm{Tr}\left\{T^a \sum_{j \neq k} \left[U_{ij}(t,x) + U_{i(-j)}(t,x)\right]\right\}$$

$$U_j(x) = \exp\left(ia_j A_j^a T^a\right) \quad E_j^a = F_{0j}^a = a_0 a_j 2ImTr[T^a U_{0j}]$$

Real-Time Evolution of the Gauge Fields

Vital insight into glasma dynamics via classical statistical simulations of gauge fields in expanding geometry

In this study **Hamiltonian evolution** in axial gauge, formulated in spatial links and electric fields (Leapfrog) in a non-expanding box

$$\partial_t U_j(x,t) = iE_j^a U_j(x,t) \qquad \partial_t E_j^a(x,t) = -2\mathrm{Im}\mathrm{Tr}\left\{T^a \sum_{j \neq k} \left[U_{ij}(t,x) + U_{i(-j)}(t,x)\right]\right\}$$

$$U_j(x) = \exp\left(ia_j A_j^a T^a\right) \quad E_j^a = F_{0j}^a = a_0 a_j 2ImTr[T^a U_{0j}]$$

Initial conditions drawn from a statistical ensemble

The real-time NRQCD setup

The real-time NRQCD setup

The real-time NRQCD setup

- Effective non-relativistic formulation of heavy quarks from systematic expansion of QCD action in quark velocity v for 2-component **pauli spinors** ψ , χ
- Hamiltonian to order $O(v^3)$ with leading order Wilson coefficients $c_i=1$

$$H^{\psi} = -\frac{\vec{D}^{2}}{2M} - c_{1} \frac{g}{2M} \vec{\sigma} \cdot \vec{B} - c_{2} \frac{g}{8M^{2}} \vec{D} \cdot \vec{E} - c_{3} \frac{ig}{8M^{2}} \vec{\sigma} \cdot (\vec{D} \times \vec{E} - \vec{E} \times \vec{D})$$

$$D_{i}\psi(x) = (U_{i,x}\psi_{x+\hat{1}} - U_{i,x-\hat{1}}^{\dagger}\psi_{x-\hat{1}})/2a_{i} + O(a_{i}^{2})$$

- Effective **non-relativistic formulation** of heavy quarks from systematic expansion of QCD action in quark velocity v for 2-component **pauli spinors** ψ , χ
- Hamiltonian to order $O(v^3)$ with leading order Wilson coefficients $c_i=1$

$$H^{\psi} = -\frac{\vec{D}^{2}}{2M} - c_{1} \frac{g}{2M} \vec{\sigma} \cdot \vec{B} - c_{2} \frac{g}{8M^{2}} \vec{D} \cdot \vec{E} - c_{3} \frac{ig}{8M^{2}} \vec{\sigma} \cdot (\vec{D} \times \vec{E} - \vec{E} \times \vec{D})$$

$$D_{i}\psi(x) = (U_{i,x}\psi_{x+\hat{i}} - U_{i,x-\hat{i}}^{\dagger}\psi_{x-\hat{i}})/2a_{i} + O(a_{i}^{2})$$

Real-time quarkonium current **correlator** $D^{>}$ from heavy quark propagator G

$$D_V^>(x_2, x_1) \sim i < J_{\text{NROCD}}^i(x_2) J_{i, \text{NROCD}}^+(x_1) >$$

- Effective **non-relativistic formulation** of heavy quarks from systematic expansion of QCD action in quark velocity v for 2-component **pauli spinors** ψ , χ
- Hamiltonian to order $O(v^3)$ with leading order Wilson coefficients $c_i=1$

$$H^{\psi} = -\frac{\vec{D}^{2}}{2M} - c_{1} \frac{g}{2M} \vec{\sigma} \cdot \vec{B} - c_{2} \frac{g}{8M^{2}} \vec{D} \cdot \vec{E} - c_{3} \frac{ig}{8M^{2}} \vec{\sigma} \cdot (\vec{D} \times \vec{E} - \vec{E} \times \vec{D})$$

$$D_{i}\psi(x) = (U_{i,x}\psi_{x+1} - U_{i,x-1}^{\dagger}\psi_{x-1})/2a_{i} + O(a_{i}^{2})$$

Real-time quarkonium current **correlator** $D^{>}$ from heavy quark propagator G

$$D_V^{>}(x_2, x_1) \sim i Tr \int DU G^{\psi}(x_2, x_1) \sigma^i G^{\chi}(x_1, x_2) \sigma_i e^{iS[U]}$$

- Effective **non-relativistic formulation** of heavy quarks from systematic expansion of QCD action in quark velocity v for 2-component pauli spinors ψ , χ
- Hamiltonian to order $O(v^3)$ with leading order Wilson coefficients $c_i=1$

$$H^{\psi} = -\frac{\vec{D}^{2}}{2M} - c_{1} \frac{g}{2M} \vec{\sigma} \cdot \vec{B} - c_{2} \frac{g}{8M^{2}} \vec{D} \cdot \vec{E} - c_{3} \frac{ig}{8M^{2}} \vec{\sigma} \cdot (\vec{D} \times \vec{E} - \vec{E} \times \vec{D})$$

$$D_{i}\psi(x) = (U_{i,x}\psi_{x+\hat{i}} - U_{i,x-\hat{i}}^{\dagger}\psi_{x-\hat{i}})/2a_{i} + O(a_{i}^{2})$$

Real-time quarkonium current **correlator** $D^{>}$ from heavy quark propagator G

$$D_V^{>}(x_2, x_1) \sim i Tr \int DU G^{\psi}(x_2, x_1) \sigma^i G^{\chi}(x_1, x_2) \sigma_i e^{iS[U]}$$

- Effective **non-relativistic formulation** of heavy quarks from systematic expansion of QCD action in quark velocity v for 2-component **pauli spinors** ψ , χ
- Hamiltonian to order O(v³) with leading order Wilson coefficients c_i=1

$$H^{\psi} = -\frac{\vec{D}^{2}}{2M} - c_{1} \frac{g}{2M} \vec{\sigma} \cdot \vec{B} - c_{2} \frac{g}{8M^{2}} \vec{D} \cdot \vec{E} - c_{3} \frac{ig}{8M^{2}} \vec{\sigma} \cdot (\vec{D} \times \vec{E} - \vec{E} \times \vec{D})$$

$$D_{1}\psi(x) = (U_{i,x}\psi_{x+\hat{1}} - U_{i,x-\hat{1}}^{\dagger}\psi_{x-\hat{1}})/2a_{i} + O(a_{i}^{2})$$

Real-time quarkonium current correlator D> from heavy quark propagator G

$$D_V^{>}(x_2, x_1) \sim i Tr \int DU G^{\psi}(x_2, x_1) \sigma^i G^{\chi}(x_2, x_1)^+ \sigma_i e^{iS[U]}$$

- Effective **non-relativistic formulation** of heavy quarks from systematic expansion of QCD action in quark velocity v for 2-component **pauli spinors** ψ , χ
- Hamiltonian to order O(v³) with leading order Wilson coefficients c_i=1

$$H^{\psi} = -\frac{\vec{D}^{2}}{2M} - c_{1} \frac{g}{2M} \vec{\sigma} \cdot \vec{B} - c_{2} \frac{g}{8M^{2}} \vec{D} \cdot \vec{E} - c_{3} \frac{ig}{8M^{2}} \vec{\sigma} \cdot (\vec{D} \times \vec{E} - \vec{E} \times \vec{D})$$

$$D_{i}\psi(x) = (U_{i,x}\psi_{x+\hat{1}} - U_{i,x-\hat{1}}^{\dagger}\psi_{x-\hat{1}})/2a_{i} + O(a_{i}^{2})$$

Real-time quarkonium current correlator D> from heavy quark propagator G

$$D_V^{>}(x_2, x_1) \sim i Tr \int DU \ G^{\psi}(x_2, x_1) \sigma^i G^{\chi}(x_2, x_1)^+ \sigma_i \ e^{iS[U]}$$

- Effective **non-relativistic formulation** of heavy quarks from systematic expansion of QCD action in quark velocity v for 2-component **pauli spinors** ψ , χ
- Hamiltonian to order $O(v^3)$ with leading order Wilson coefficients $c_i=1$

$$H^{\psi} = -\frac{\vec{D}^{2}}{2M} - c_{1} \frac{g}{2M} \vec{\sigma} \cdot \vec{B} - c_{2} \frac{g}{8M^{2}} \vec{D} \cdot \vec{E} - c_{3} \frac{ig}{8M^{2}} \vec{\sigma} \cdot (\vec{D} \times \vec{E} - \vec{E} \times \vec{D})$$

$$D_{1}\psi(x) = (U_{i,x}\psi_{x+\hat{i}} - U_{i,x-\hat{i}}^{\dagger}\psi_{x-\hat{i}})/2a_{i} + O(a_{i}^{2})$$

Real-time quarkonium current **correlator** $D^{>}$ from heavy quark propagator G

$$D_V^{>}(x_2, x_1) \sim i Tr \int DU \ G^{\psi}(x_2, x_1) \sigma^i G^{\chi}(x_2, x_1)^+ \sigma_i \ e^{i S[U]}$$

Heavy quark equation of motion: $G^{\psi}[U]^{t+\Delta t} = \exp[-i\Delta t H^{\psi}[U]] \cdot G^{\psi}[U]^{t}_{\chi_{2},\chi_{1}}$

- Effective non-relativistic formulation of heavy quarks from systematic expansion of QCD action in quark velocity v for 2-component **pauli spinors** ψ , χ
- Hamiltonian to order O(v³) with leading order Wilson coefficients c_i=1

$$H^{\psi} = -\frac{\vec{D}^{2}}{2M} - c_{1} \frac{g}{2M} \vec{\sigma} \cdot \vec{B} - c_{2} \frac{g}{8M^{2}} \vec{D} \cdot \vec{E} - c_{3} \frac{ig}{8M^{2}} \vec{\sigma} \cdot (\vec{D} \times \vec{E} - \vec{E} \times \vec{D})$$

$$D_{i}\psi(x) = (U_{i,x}\psi_{x+\hat{i}} - U_{i,x-\hat{i}}^{\dagger}\psi_{x-\hat{i}})/2a_{i} + O(a_{i}^{2})$$

Real-time quarkonium current **correlator** $D^{>}$ from heavy quark propagator G

$$D_V^{>}(x_2, x_1) \sim iTr \int DU G^{\psi}(x_2, x_1) \sigma^i G^{\chi}(x_2, x_1)^+ \sigma_i e^{iS[U]}$$

Heavy quark equation of motion: $G^{\psi}[U]^{t+\Delta t}_{x_2,x_1} = \exp[-i\Delta t H^{\psi}[U]] \cdot G^{\psi}[U]^t_{x_2,x_1}$

$$G(t + a_t) = (1 - ia_t H[U(t)]) \cdot G(t)$$

Often via forward Euler: cheap but 1st order in dt, inherently unstable (Courant), range of validity of NRQCD mixed with breakdown of discretization

- Effective non-relativistic formulation of heavy quarks from systematic expansion of QCD action in quark velocity v for 2-component pauli spinors ψ , χ
- Hamiltonian to order O(v³) with leading order Wilson coefficients c_i=1

$$H^{\psi} = -\frac{\vec{D}^{2}}{2M} - c_{1} \frac{g}{2M} \vec{\sigma} \cdot \vec{B} - c_{2} \frac{g}{8M^{2}} \vec{D} \cdot \vec{E} - c_{3} \frac{ig}{8M^{2}} \vec{\sigma} \cdot (\vec{D} \times \vec{E} - \vec{E} \times \vec{D})$$

$$D_{1}\psi(x) = (U_{i,x}\psi_{x+\hat{1}} - U_{i,x-\hat{1}}^{\dagger}\psi_{x-\hat{1}})/2a_{i} + O(a_{i}^{2})$$

Real-time quarkonium current **correlator** $D^{>}$ from heavy quark propagator G

$$D_V^{>}(x_2, x_1) \sim i Tr \int DU G^{\psi}(x_2, x_1) \sigma^i G^{\chi}(x_2, x_1)^+ \sigma_i e^{iS[U]}$$

 $\blacksquare \text{ Heavy quark equation of motion: } G^{\psi}[U]^{t+\Delta t} = \exp[-i\Delta t \ H^{\psi}[U]] \cdot G^{\psi}[U]^{t}_{x_{2},x_{1}}$

$$G(t+a_t) = \left(1 + \frac{ia_t}{2}H[U(t)]\right)^{-1} \cdot \left(1 - \frac{ia_t}{2}H[U(t)]\right) \cdot G(t)$$

Optimal rational approximation of exp (Crank-Nicholson, O(dt²)): unconditionally stable, no mixing of range of validity. (No operator splitting via MPI PETSc)

Wigner Coordinates for Non-Equilibrium

■ No time translational invariance: need to correctly account for relative and central time coordinate in 2pt functions: $t_2 + t_1$

 $t = \frac{t_2 + t_1}{2} \ s = t_2 - t_1$

Wigner Coordinates for Non-Equilibrium

- No time translational invariance: need to correctly account for relative and central time coordinate in 2pt functions: $t = \frac{t_2 + t_1}{2} \ s = t_2 t_1$
- Spectral function from Fourier transform over finite temporal extent in s

$$\rho(t,\omega,\boldsymbol{p}=0)$$

$$=2Im\left[\int_{0}^{s_{max}}D^{>}\left(t+\frac{s}{2},t-\frac{s}{2},\boldsymbol{p}=0\right)e^{-i\omega s}\,ds\right]$$

RT evolution of quarks & links

Wigner Coordinates for Non-Equilibrium

- No time translational invariance: need to correctly account for relative and central time coordinate in 2pt functions: $t = \frac{t_2 + t_1}{2} \ s = t_2 t_1$
- Spectral function from Fourier transform over finite temporal extent in s

$$\rho(t,\omega,\boldsymbol{p}=0)$$

$$=2Im\left[\int_{0}^{s_{max}}D^{>}\left(t+\frac{s}{2},t-\frac{s}{2},\boldsymbol{p}=0\right)e^{-i\omega s}\,ds\right]$$

Spectral function has explicit t dependence, signaling real-time evolution of gauge fields

Free theory sanity check

Real-time correlation function is complex – finite volume effects as recurrence

Free theory sanity check

- Real-time correlation function is complex finite volume effects as recurrence
- Free spectral function reproduced reducing mass does not lead to breakdown

Free theory sanity check

- Real-time correlation function is complex finite volume effects as recurrence
- Free spectral function reproduced reducing mass does not lead to breakdown

Quarkonium in the Glasma (I)

vector channel, color singlet

Low enegy gluons do not significantly impact quarks at early times

Quarkonium in the Glasma (I)

- Low enegy gluons do not significantly impact quarks at early times
- Bulk glue effects manifest in the intermediate (s,t) time physics of heavy quarks

Quarkonium in the Glasma (I)

vector channel, color singlet

- Low enegy gluons do not significantly impact quarks at early times
- Bulk glue effects manifest in the intermediate (s,t) time physics of heavy quarks

Quarkonium in the Glasma (I)

vector channel, color singlet

- Low enegy gluons do not significantly impact quarks at early times
- Bulk glue effects manifest in the **intermediate (s,t) time physics** of **heavy quarks**
- At the parameters used here, **no signs for binding** into clear resonances

Quarkonium in the Glasma (II)

- Reduction of singlet amplitude and broadening understood from gluon absoprtion
- Octet enhancement from interaction with low enegy gluonic bulk

Classical Thermal Equilibrium

• Statistical operator: $\rho = e^{-\beta H}$

Classical Thermal Equilibrium

- Statistical operator: $\rho = e^{-\beta H}$
- Initialisation method (coupling to a heat bath)
 - 1. Draw normal distributed random E-field with standard deviation $\sigma(\beta)$
 - 2. Restore Gauss law
 - 3. N update steps for links and E-field
 - 4. Repeat 1-3 until thermalized

discard E and repeat until Too stabilizes

A. Akamatsu, A. Rothkopf, N. Yamamoto, JHEP 1603 (2016) 210

Classical Thermal **Equilibrium**

- Statistical operator: $\rho = e^{-\beta H}$
- Initialisation method (coupling to a heat bath)
 - Draw normal distributed random E-field with standard deviation $\sigma(\beta)$
 - 2. Restore Gauss law
 - N update steps for links and E-field
 - 4. Repeat 1-3 until thermalized

discard E and repeat until Too stabilizes

A. Akamatsu, A. Rothkopf, N. Yamamoto, JHEP 1603 (2016) 210

Static Potential in the Classical Equilibrium

- Consider static quarks via the equilibrium real-time Wilson loop W(t,x)
- Attempt to extract effective real-time potential via Wilson loop spectral function Re[V] from position of lowest lying peak, Im[V] from width, see Y.Burnier, A. Rothkopf PRD86 (2012) 051503

Static Potential in the Classical Equilibrium

- Consider static quarks via the equilibrium real-time Wilson loop W(t,x)
- Attempt to extract effective real-time potential via Wilson loop spectral function Re[V] from position of lowest lying peak, Im[V] from width, see Y.Burnier, A. Rothkopf PRD86 (2012) 051503

Static Potential in the Classical Equilibrium

- Consider static quarks via the equilibrium real-time Wilson loop W(t,x)
- Attempt to extract effective real-time potential via Wilson loop spectral function Re[V] from position of lowest lying peak, Im[V] from width, see Y.Burnier, A. Rothkopf PRD86 (2012) 051503

Same result as found in the literature: **no real-part** of the potential emerges

- Finite mass Wilson loop (FM) reduces to Wilson loop for $M_O \rightarrow \infty$:
 - Axial gauge: $G_{\psi}(x, x_0, t) \equiv 1 \cdot \delta_{x,x_0}$ and $G_{\chi}(x, x_R, t) \equiv 1 \cdot \delta_{x,x_R}$
 - General: Propagator collects temporal gauge links only, i.e. $G_{\psi}(x,x_0,t) \equiv \prod_{i=0}^{N_t-1} U_0(x,t_i) \cdot \delta_{x,x_0}$ and $G_{\chi}(x,x_R,t) \equiv \prod_{i=N_t-1}^0 U_0(x,t_i) \cdot \delta_{x,x_R}$

→ No real part of the potential even for finite mass

Quarkonium Spectrum in the Class. Therm. Eq.

- Very similar result compared to the non-equilibrium at t=100a_s
- No sign of binding also in the classical thermal equilibrium

Quarkonium Spectrum in the Class. Therm. Eq.

- Very similar result compared to the non-equilibrium at t=100a_s
- No sign of binding also in the classical thermal equilibrium

Understanding the absence of binding

Consider static quarks via the non-equilibrium real-time Wilson loop W(t,s,r)

Understanding the absence of binding

Consider static quarks via the non-equilibrium real-time Wilson loop W(t,s,r)

Understanding the absence of binding

Consider static quarks via the non-equilibrium real-time Wilson loop W(t,s,r)

- Similar to results in thermal equilibrium: no real-part of the potential emerges
- No indications of binding, not even Coulombic, found out of equilibrium so far

Summary

- Combination of real-time classical statistical simulations for gauge fields with novel stable lattice NRQCD solver
- Direct computation of non-equilibrium real-time quarkonium correlators and spectral functions in Wigner coordinates
- Enhancement in quarkonium colour octet channel and no signs of binding in the singlet channel
- Consistent with absence of a real-part in effective potential
- Late non-equilibrium results similar to classical thermal equilibrium
- Need further study at stronger couplings to confirm absence or presence of binding

Thank you for your attention -

ご清聴ありがとうございました