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Heavy ion collisions � large eB

In non-central heavy ion collisions very strong magnetic �eld
may emerge: |e ~B| ∼ (3− 10)m2

π
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Chiral magnetic e�ect (CME)

K. Fukushima, D. Kharzeev, H.J. Warringa, PRD78 (2008) 074033

�A system with a nonzero chirality responds to a magnetic �eld by

inducing a current along the magnetic �eld. This is the Chiral

Magnetic E�ect.�

I macroscopic e�ect of microscopic dynamics of QCD
I allows probing the topological structure of SU(3) gauge

�eld
I non-dissipative, topologically protected
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CME current

Parallel ~E and ~B � topologically non-trivial EM��eld (non-zero
winding number), Adler-Bell-Jackiw chiral anomaly generates
topological density:

dρ5
dt

=
q2

2π2
~E · ~B

Nielsen and Ninomiya energy argument:

~j · ~E = µ5
dρ5
dt

=
q2µ5
2π2

~E · ~B =⇒

~j =
q2µ5
2π2

~B

The expression for j can be also calculated microscopically and
is independent on the model.
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From ρ5 to µ5

Chirality-changing processes:

dρ5
dt

= −ρ5/τ +
q2

2π2
~E · ~B =⇒ ρ5 =

q2

2π2
~E · ~Bτ

At small µ5 � T , µ5 �
√
qB, ρ5 = χ(B, T )µ5

1. T � √qB, temperature dominates: χ(B, T ) = T 2/3,

2. T � √qB, 1st Landau level degeneracy:
χ(B, T ) = |qB|/2π2

Linear response theory:

jiCME = σijCMEE
j , σijCME =

q4

8π4
τ

χ(T,B)
BiBj
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CME observation: QCD

I CME current forms dipole in the QGP �reball that a�ects
hadron production at freeze-out

dN±
dφ
∝ 1 + 2v1 cosφ+ 2v2 cos 2φ+ . . .+ 2a± sinφ + . . . ,

where a± = ±µ5| ~B|
I However, µ5 sign is event-dependent � can not observe
P�odd a± directly (this would mean global P�symmetry
violation in QCD)

More complicated observables yet do not allow to 100%�con�rm
the existence of CME, but the data favors the existence of CME
in QGP (see also the talk by Jinfeng Liao on Tuesday)
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CME observation: Dirac semimetals

I Experimental: Q. Li et al., Observation of the chiral magnetic

e�ect in ZrTe5, Nature Physics 12, 550 � 554 (2016)

I QMC: D.Boyda, V.Braguta, M.Katsnelson, A.Kotov, Lattice

quantum Monte Carlo study of chiral magnetic e�ect in Dirac

semimetals, Annals of Physics (2018), arXiv:1707.09810

experiment with ZrTe5
σCME within QMC
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Conductivity in external magnetic �eld

I ~E ‖ ~B
I ρ̇5 = q2

4π2 ( ~E, ~B)− ρ5/τ ,
τ � chirality-changing scattering time

I ρ5 = q2τ
4π2 ( ~E, ~B) for ρ̇5 = 0

I ~JCME = q2

2π2µ5 ~B

I ~J = σ ~E + q2

2π2
~B × µ5

(
ρ5 ∼ τ( ~E, ~B)

)
I Large magnetoconductivity σ‖
I Classically δσ‖ = 0

I Observed in experiment (Weyl semimetals):
Q. Li et al., Nature Phys. 12 (2016) 550-554
H. Li et al., Nat. Comm. 7, 10301 (2016)

What happens in QCD?
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Lattice details

I Nf = 2 + 1, physical quark masses
I Staggered fermions with improved action
I T =125MeV, 200MeV, 250MeV
I Lattice sizes and steps:

a, fm Ls Nt

0.988 48 10

0.0618 64 16

0.0989 48 16

0.0493 64 16

I Integral Kubo equation

C(τi) =

∫ ∞
0

dω

2π
K(τi, ω)ρ(ω), K(τi, ω) =

coshω(β − τi/2)

sinhωβ/2
ω

I Conductivity (Cem = q2u + q2d + q2s):

σ

TCem
=

1

6Cem
lim
ω→0

ρ(ω)

ω
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The Backus-Gilbert method

I The method is designed for solving linear ill-de�ned problems with
controllable regularization and systematic uncertainty.

I de�ne the (normalized) resolution function δ as the linear combination
of adjustable coe�cients q(ω̄):

ρ̃(ω̄) =

∫
dωδ(ω̄, ω)ρ(ω),

δ(ω̄, ω) =
∑
i

qi(ω̄)K(τi, ω),

I minimize the BG�functional:

H(ρ) = λA(ρ) + (1− λ)B(ρ),

A(ρ) =

∫
dωδ(ω̄, ω)(ω − ω̄)2, B(ρ) = Var[ρ] = qTCq.

The A part is the width of the resolution function (2nd moment to make qi
easy to �nd), B(ρ) � make less dependent on data (regularize).
The method provides ρ(ω) and δ(ω̄, ω) as the output!
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Rescaling and resolution function

Rescaling of the kernel K(τ, ω)→ f(ω)K(τ, ω) leads to reconstruction
of ρ(ω)/f(ω) instead of ρ(ω). For conductivity we take f(ω) = ω.
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Figure: Sample resolution function peaked at ω̄ = 0 for rescaling
f(ω) = ω.

The width is of order 6 3.5T (not enough Nτ ).
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Ultraviolet contamination

Ultraviolet shape of the spectral function in the LO on the
lattice:

ρUV(ω) = Ce/o
3

4π2
ω2 tanh

(
ωβ

4

)
ρlat(ω)

ρcont(ω)
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In the free case Ceven = 1/2, Codd = 3/2
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Staggered fermions and two branches

The staggered 〈jj〉 correlator has the oscillating structure:

C(τ) = A(τ) + (−1)τB(τ)

2 4 6 8 10 12 14

τ

10−4

10−3

10−2

G
(τ

)

∆σ(0) = A

∫ ∞
ω0

dω
ρeUV(ω) + ρoUV(ω)

2
δ(0, ω) (1)
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UV contribution estimation

I It is hard to do it model-independently

I We assume that spectral function approximately reads
(QCD sum rules):

ρ(ω) ≈ (Bω)
small ω

θ(ω0 − ω) + (AρUV(ω))
large ω

θ(ω − ω0).

I The factor A ≈ 1 accounts for radiative corrections, ω0 �
threshold frequency.

I Fit in B. Brandt et al. [1512.07249], A. Amato et al.

[1307.6763]: A ≈ 1, ω0 ≈ 7T , χ2/ndof ∼ 1.

I Take f(ω) = ρUV(ω), expect that

lim
ω→∞

ρ̃(ω)/f(ω) = A.
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Ultraviolet reconstruction for Nt = 96, eB = 0
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I In the free case 1/2 and 3/2 coe�cients are obtained easily

I Interaction noticeably shifts Ce/o, but the sum is almost
constant, (Ce + Co)/2 ≈ 1
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Ultraviolet reconstruction for Nt = 96, �nite eB
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I Free case with eB: asymptotic region is shifted to higher ω

I Interaction noticeably shifts Ce/o, but the sum is almost
constant, (Ce + Co)/2 ≈ 1
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Check at eB = 0 and eB > 0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

eB, GeV2

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

(σ
(B

)
−
σ

(0
))
/(
T
C

em
)

σ⊥, Nt = 16, BG
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Nt = 10 vs Nt = 16 Comparison at eB = 0

I Our results are consistent for two di�erent time extensions both
at zero and �nite eB

I Good agreement with previous studies at zero eB
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Results at eB = 0

I At T = 200 MeV �at spectral function → good analysis

I At T = 250 MeV B. Brandt et al. report the rise of peak at zero
→ possible underestimation
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Conductivity at �nite magnetic �eld

Idea: consider di�erence C(t, eB)−C(t, eB = 0) to possibly avoid UV
contamination, also δ becomes narrower
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I The peak grows around ω = 0, UV behavior is indeed small

I Correction due to the intermediate region is hard to estimate
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Conductivity at �nite magnetic �eld

I Linear growth is observed in σ‖ at eB � T 2

I The σ⊥ decay results from the Lorentz force acting on charged
particles moving in the direction of ~E ⊥ ~B

I Estimation for chirality-changing scattering time from the slope
of σ‖(eB) at

√
eB � T :

◦ τ = 0.54(14) fm/c at T = 200 MeV
◦ τ = 0.62(12) fm/c at T = 250 MeV 20


