The Kondo effect in dense QCD

In collaboration with Xu-Guang Huang (Fudan U.) and Rob Pisarski (BNL)

Koichi Hattori Yukawa Institute for Theoretical Physics

XQCD @ Tokyo campus of Tsukuba Univ.

Table of contents

1 "The QCD Kondo effect" in normal phase:-- Dense quark matter with heavy-flavor impurities

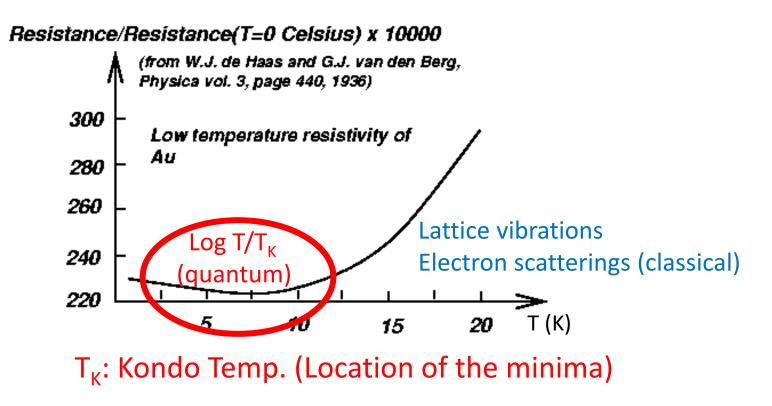
KH, K. Itakura, S. Ozaki, S. Yasui, arXiv:1504.07619 [hep-ph]

+ Impurity (heavy quark) scattering
+ Role of dimensional reduction in dense systems
+ Non-Abelian interaction in QCD

2 The Kondo effect in two-flavor superconducting phase KH, X.-G. Huang, R. Pisarski, <u>arXiv:1903.10953</u> [hep-ph]

The Kondo effect in cond. matt.

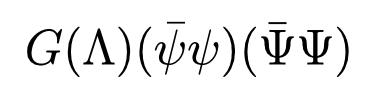
Measurement of the resistance of alloy (with impurities)



Progress of Theoretical Physics, Vol. 32, No. 1, July 1964 Resistance Minimum in Dilute Magnetic Alloys Jun KONDO

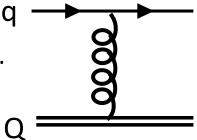
Impurity scatterings near a Fermi surface

Heavy-quark impurity in light-quark matter



How does the coupling evolve in the IR regime, $\Lambda \rightarrow 0$?

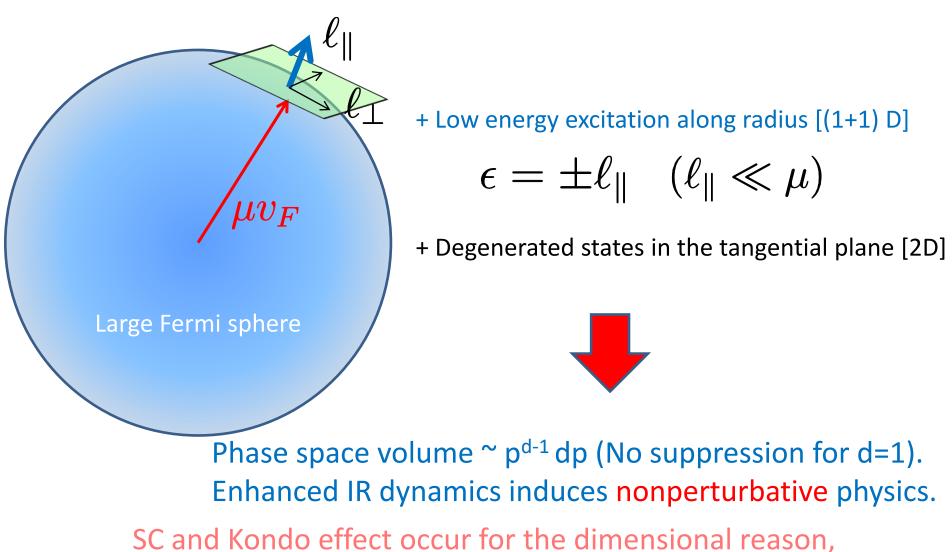
The LO does not explain the minimum of the resistance.



Logarithmic quantum corrections arise in special kinematics and circumstances. → Kondo effect

Large Fermi sphere

"Dimensional reduction" in dense systems -- (1+1)-dimensional low-energy effective theory



and no matter how weak the attraction is.

Scaling argument

Scaling dimensions in the IR

Evolution from UV to IR: $\epsilon \to \epsilon - \Delta \epsilon$

$$\ell_{\parallel} \to \ell_{\parallel} - \Delta \ell_{\parallel}$$
$$\ell_{\perp} = \ell_{\perp}$$

 ℓ_{\perp} : Label of the degenerated states (Does not scale)

Scaling dimension of ψ is determined from the kinetic term.

$$\mathcal{S}^{\mathrm{kin}} = \int dt \sum_{\boldsymbol{v}_F} \int \frac{d^2 \boldsymbol{\ell}_{\perp} d\ell_{\parallel}}{(2\pi)^3} \bar{\psi}_{+} (i\partial_t - \ell_{\parallel}) \gamma^0 \psi_{+} + \mathcal{O}(1/\mu)$$

$$0 = \frac{2d_{\psi}}{\overline{\psi} \cdot \psi} + \begin{pmatrix} -1 \\ dt \end{pmatrix} + \frac{1}{d\ell_{\parallel}} + \frac{1}{\partial_{t}} \implies d_{\psi} = -\frac{1}{2}$$

Spatial dimension = 1

IR scaling dimension for the Kondo effect

Heavy-light 4-Fermi operator

Light quark: $d_{\psi} = -1/2$ Heavy quark: $d_{\Psi} = 0$

$$S_{\rm H-L}^{\rm int} = \int dt \left[\int \frac{d^2 \ell_{\perp} d\ell_{\parallel}}{(2\pi)^3} \right]^2 G[\bar{\psi}_+^{(3)} t^a \psi_+^{(1)}] [\bar{\Psi}_+^{(4)} t^a \Psi_+^{(2)}]$$

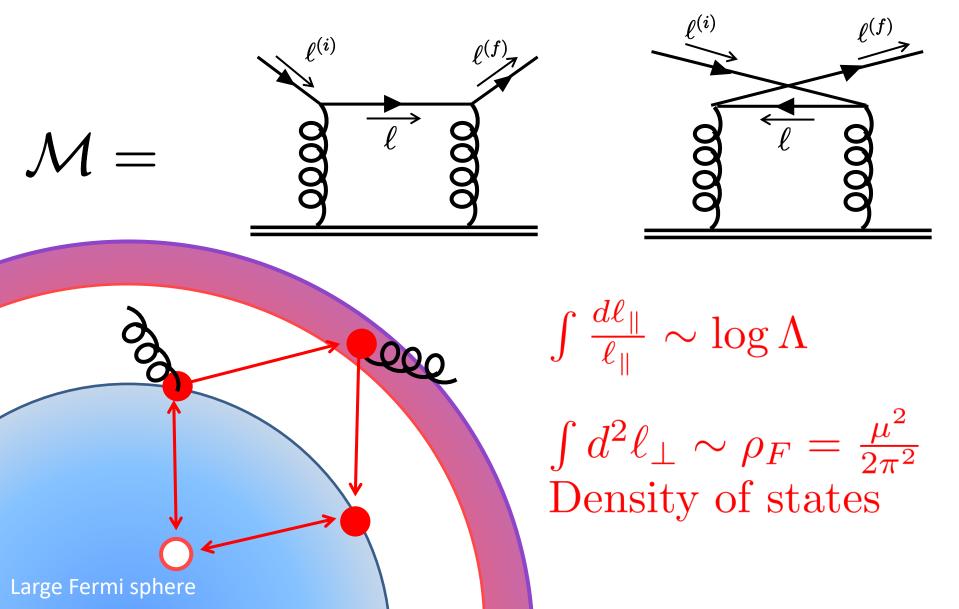
Heavy-quark field (impurity) is a scattering center for light quarks (No scaling).

$$d_{(\psi\Psi)^2} = (-1) + 2(1 + d_{\psi}) + 2d_{\Psi} = 0$$

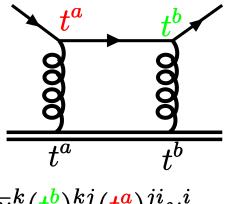
Marginal !! Let us proceed to diagrams.

Logarithms from the NLO diagrams

The NLO scattering amplitudes -- Renormalization in the low energy dynamics



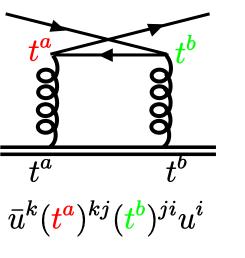
Log correction and color-matrix structures



$$ar{u}^k(t^b)^{kj}(t^a)^{ji}u^a$$

Particle contribution

$$\int_{\epsilon_F} \frac{d\epsilon}{\epsilon} \sim +\log \frac{\Lambda}{\Lambda - d\Lambda}$$



Hole contribution

$$\frac{d\epsilon}{\epsilon} \sim +\log \frac{\Lambda}{\Lambda - d\Lambda} \qquad \qquad \int^{\epsilon_F} \frac{d\epsilon}{\epsilon} \sim -\log \frac{\Lambda}{\Lambda - d\Lambda}$$

Logs corrections cancel each other in an Abelian theory (No net effect).

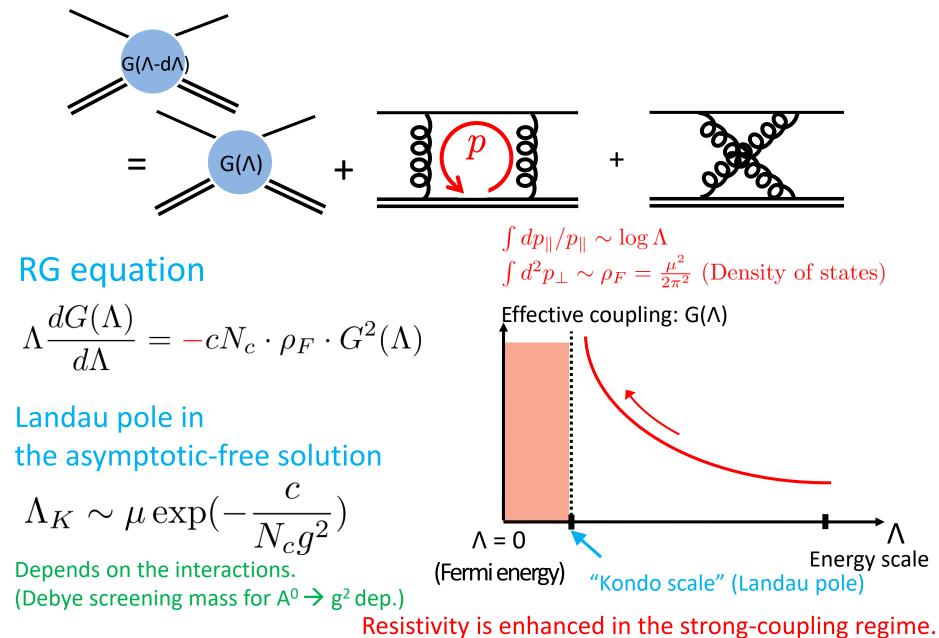
✓ *Incomplete cancellation* due to the color matrices

Particle contribution

Hole contribution

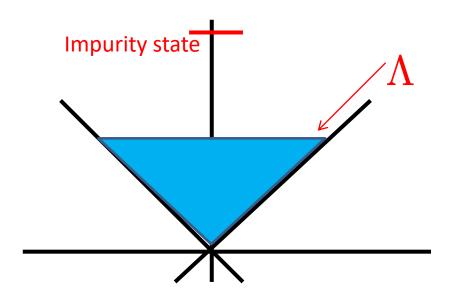
$$[t^{a}t^{b}]_{ij}[t^{a}t^{b}]_{k\ell} = c\delta_{ij}\delta_{k\ell} - \frac{1}{n}t^{c}_{ij}t^{c}_{k\ell}$$
$$[t^{a}t^{b}]_{ij}[t^{b}t^{a}]_{k\ell} = c\delta_{ij}\delta_{k\ell} - \frac{1}{n}t^{c}_{ij}t^{c}_{k\ell} + \frac{n}{2}t^{c}_{ij}t^{c}_{k\ell}$$

RG analysis for "the QCD Kondo effect"



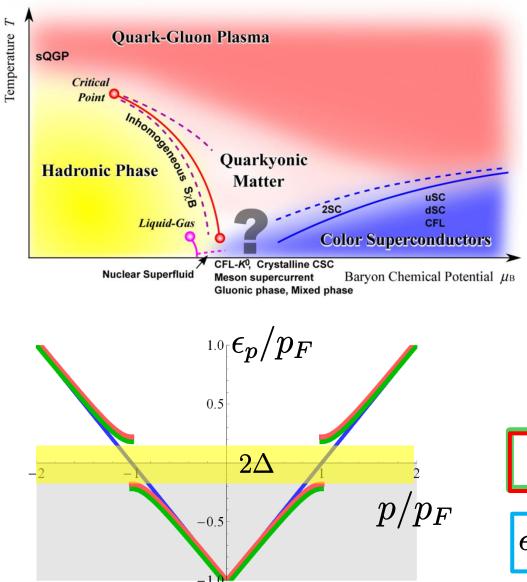
Short summary for the Kondo effect in quark matter

- 1. Non-Ablelian interaction
- 2. Dimensional reduction near the Fermi surface
- 3. Continuous spectra near the Fermi surface, and heavy impurities (gapped spectra).

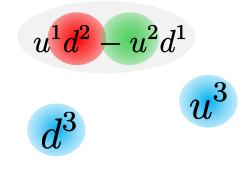


The Kondo effect in 2SC phase

"Gapped" and "ungapped" quarks in 2SC phase



Attraction in color 3 S-wave Spin-0 Flavor antisymmetric



$$\epsilon_p = \sqrt{(|\boldsymbol{p}| - \mu)^2 + \Delta^2}$$

$$\epsilon_p = ||\boldsymbol{p}| - \mu|$$

Gluons in the 2SC phase

$$\begin{array}{l} \text{Gapped - Gapped} & \longrightarrow \\ \lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} & \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} & \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \begin{array}{l} \lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} & \lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} & \begin{array}{l} \text{Pure gluodynamics in the unbroken sector} \\ \text{Rischke, Son, Stephanov} \\ \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} & \lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} & \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \end{array}$$

Gluons in the broken sector are all gapped by the Debye and Meissner masses.

Gluon color		$-\Pi_{aa}^{00}(0)$			$\Pi^{ii}_{aa}(0)$
а	T=0		$T \ge T_c$	T=0	$T \ge T_c$
1-3	0		$3 m_g^2$	0	0
4–7	$\frac{3}{2}m_g^2$		$3 m_g^2$	$\frac{1}{2} m_{g}^{2}$	0
8	$3 m_g^2$		$3 m_g^2$	$\frac{1}{3} m_{g}^{2}$	0

$$m_g^2 = \frac{(g\mu)^2}{6\pi^2}$$

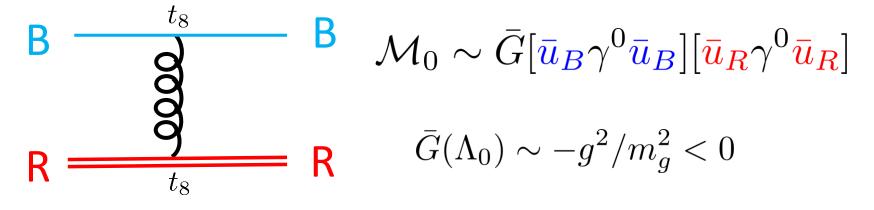
D. Rischke

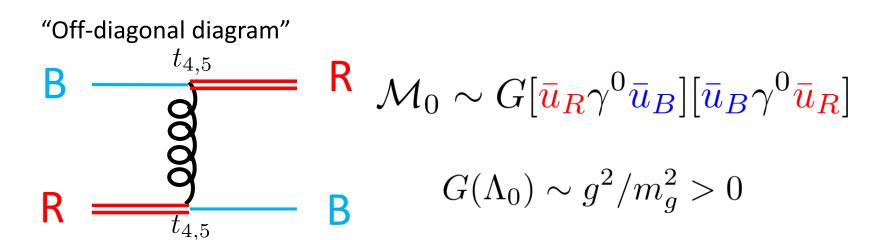
Scattering btw the red (gapped) and blue (ungapped).

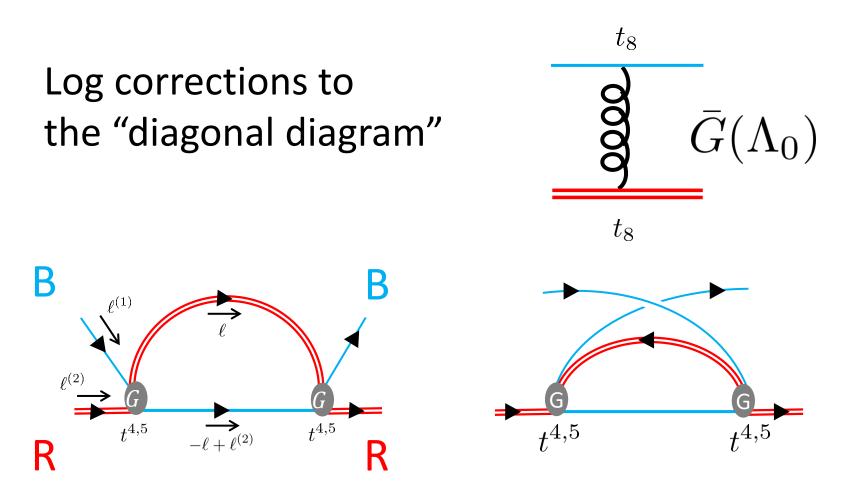
-- Gluons 4, 5, 8 are coupled to R and B.

LO diagrams

"Diagonal diagram"



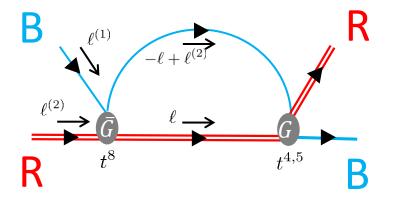




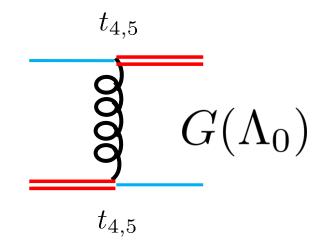
Diagrams with two diagonal matrices t⁸ cancel each other (Abelian).

$$\mathcal{M} \sim G^2 \log \Lambda$$
 \longrightarrow $\Lambda \frac{d\bar{G}}{d\Lambda} = -\frac{3}{4}\rho_F G^2$

Log corrections to the "off-diagonal diagram"



 $\ell^{(1)}$



- + Disconnected diagrams (cross channels)
 - \rightarrow Do not yield logs.

 $\mathcal{M} \sim G\bar{G}\log\Lambda \qquad \stackrel{\ell}{\longrightarrow} \qquad \Lambda \frac{dG}{d\Lambda} = -\frac{1}{6}\rho_F \,G\bar{G}$

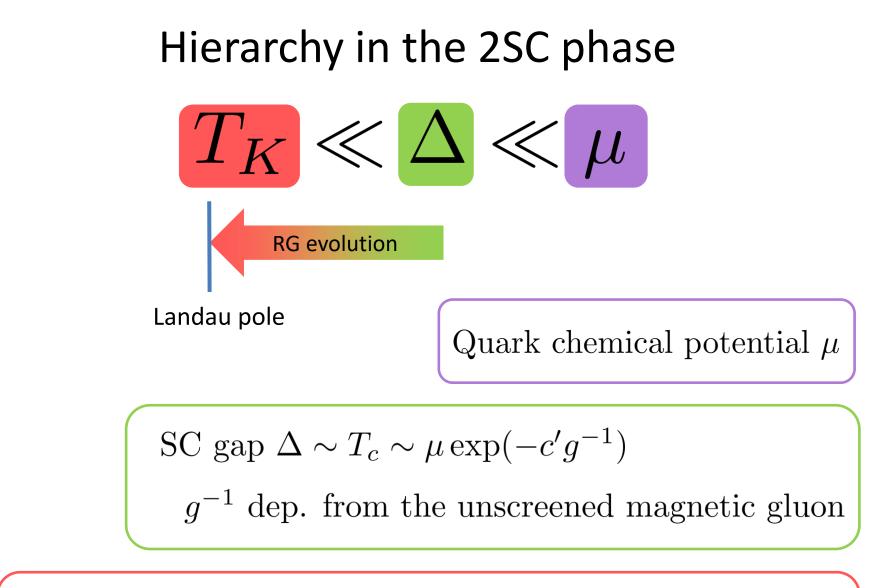
Evolution of the coupled RG equations

$$\begin{cases} \Lambda \frac{dG}{d\Lambda} = -\frac{1}{6}\rho_F G\bar{G} \\ \Lambda \frac{d\bar{G}}{d\Lambda} = -\frac{3}{4}\rho_F G^2 & \text{Density of states:} \\ \rho_F = \frac{\mu^2}{2\pi^2} \end{cases}$$

$$\Rightarrow \quad \frac{dG}{d\bar{G}} = \frac{2}{9} \cdot \frac{\bar{G}}{G} \\ \text{RG evolution along the hyperbolic curves} \\ (3G)^2 - 2(\bar{G})^2 = C \\ C \text{ is determined by the initial conditions.} \qquad 2 \\ G(\Lambda_0) > 0, \quad \bar{G}(\Lambda_0) < 0 \qquad -3 \\ \hline -1.0 \quad -0.5 \quad 0.0 \quad 0.5 \quad 1.0 \end{cases}$$

C is

 G_{2SC}



Kondo temperature $T_K^{2SC} \sim \mu \exp(-cg^{-2})$

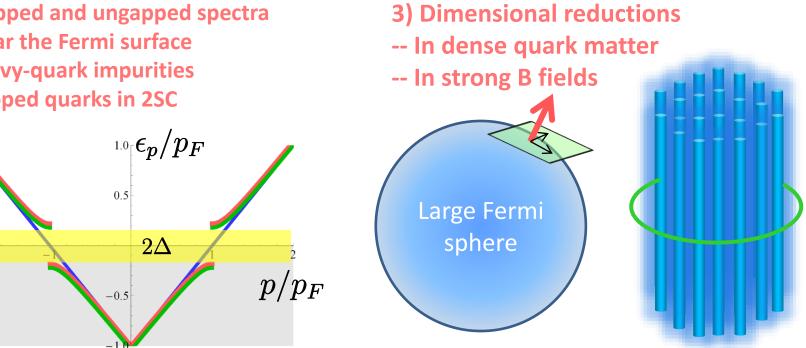
 g^{-2} dep. from the all screened gluons (Meissner mass)

Summary

The QCD Kondo effect occurs in various systems.

Necessary ingredients

- 1) Non-Abelian interactions (QCD)
- 2) Gapped and ungapped spectra near the Fermi surface
- -- Heavy-quark impurities
- -- Gapped quarks in 2SC



Ozaki, K. Itakura, Y. Kuramoto

Prospects

--- Transport properties in neutron star physics --- Realization with ultracold atoms

Back-up

IR scaling dimensions

When
$$\epsilon \to s\epsilon$$
, $\ell_{\parallel} \to s\ell_{\parallel}$. $(s < 1)$

Kinetic term

$$S^{\mathrm{kin}} = \int dt \sum_{\boldsymbol{v}_F} \int \frac{d^2 \boldsymbol{\ell}_{\perp} d\boldsymbol{\ell}_{\parallel}}{(2\pi)^3} \bar{\psi}_+ (i\partial_t - \boldsymbol{\ell}_{\parallel}) \gamma^0 \psi_+ + \mathcal{O}(1/\mu)$$
$$0 = \frac{2d_{\psi}}{\bar{\psi} \cdot \psi} + \begin{pmatrix} -1 \\ dt \end{pmatrix} + \begin{pmatrix} 1 \\ d\boldsymbol{\ell}_{\parallel} \end{pmatrix} + \begin{pmatrix} 1 \\ \partial_t \end{pmatrix}$$
$$d_{\psi} = -\frac{1}{2}$$

Four-Fermi operators for superconductivity Polchinski (1992)

$$\begin{split} \mathcal{S}^{\text{int}} &= \int dt \left[\int \! \frac{d^2 \boldsymbol{\ell}_{\perp} d\ell_{\parallel}}{(2\pi)^3} \right]^4 G[\bar{\psi}_{+}^{(4)} \hat{\gamma}_{\parallel}^{\mu} \psi_{+}^{(2)}] [\bar{\psi}_{+}^{(3)} \hat{\gamma}_{\mu}^{\parallel} \psi_{+}^{(1)}] \delta^{(3)}(\boldsymbol{p}^{(1)} + \boldsymbol{p}^{(2)} - \boldsymbol{p}^{(3)} - \boldsymbol{p}^{(4)}) \\ \text{In general momentum config.} \\ p^{(1)} + p^{(2)} \sim \mu \qquad d_{4-\text{Fermi}} = (-1) + 4(1 - \frac{1}{2}) = +1 \\ dt \qquad 4(d\ell_{\parallel} + d_{\psi}) \\ \text{In the BCS config.} \\ p^{(1)} + p^{(2)} \sim \ell_{\parallel} \ll \mu \qquad d_{4-\text{Fermi}} = (-1) + 4(1 - \frac{1}{2}) - 1 = 0 \end{split}$$

IR scaling dimension for the Kondo effect

Heavy-quark Kinetic term

$$S_H^{ ext{kin}} = \int dt \int rac{d^3 oldsymbol{k}}{(2\pi)^3} \Psi_+^\dagger(oldsymbol{k}) i \partial_t \Psi_+(oldsymbol{k}) + \mathcal{O}(1/m_H)
onumber \ d_\Psi = (-1) + 1 = 0$$

Heavy-light four-Fermi operator

$$S_{\rm H-L}^{\rm int} = \int dt \left[\int \frac{d^2 \boldsymbol{\ell}_{\perp} d\ell_{\parallel}}{(2\pi)^3} \right]^2 \left[\int \frac{d^3 \boldsymbol{k}}{(2\pi)^3} \right]^2 G[\bar{\psi}_+^{(3)} t^a \psi_+^{(1)}] [\bar{\Psi}_+^{(4)} t^a \Psi_+^{(2)}]$$

$$d_{\mathrm{H-L}} = (-1) + 2(1 + d_{\psi}) + 2d_{\Psi} = 0$$

Marginal !! Let us proceed to diagrams.

High-Density Effective Theory (LO)

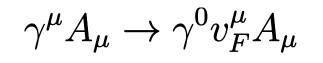
Expansion around the large Fermi momentum $0 \quad 0 \quad i \quad i \quad i \quad i \quad 0$

$$p^{\mathfrak{o}} = \ell^{\mathfrak{o}} \,, \quad \boldsymbol{p}^{\iota} = \mu \boldsymbol{v}_F^{\iota} + \boldsymbol{\ell}^{\iota}$$

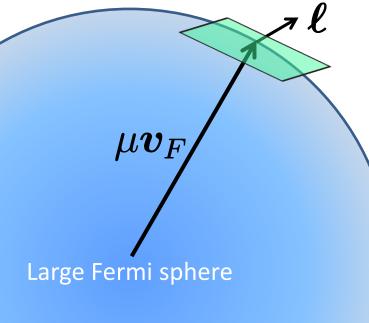
(1+1)-dimensional dispersion relation

$$\ell^0 = oldsymbol{v}_F \cdot oldsymbol{\ell} \equiv \ell_\parallel$$

Spin flip suppressed when the mass is small m << μ .



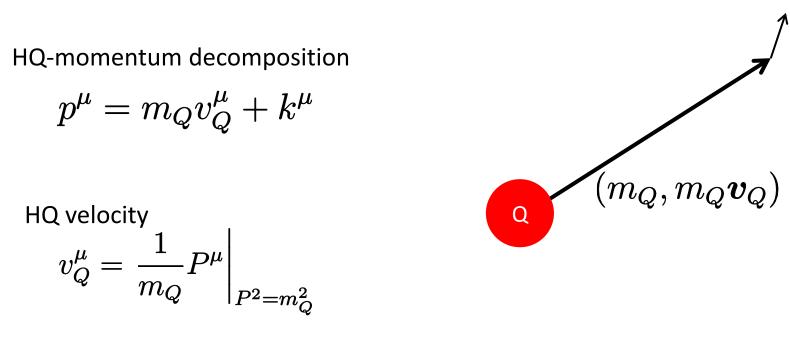
000



Heavy-Quark Effective Theory (LO)

 \boldsymbol{k}

NOOL



Nonrelativistic magnetic moment suppressed by 1/m_Q

$$\gamma^{\mu}A_{\mu} \rightarrow v_{Q}^{\mu}A_{\mu}$$

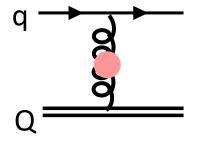
 $\gamma^{\mu}A_{\mu} = A^{0} \text{ when } \vec{v}_{Q} = 0.$

Gluon propagator in dense matter

$$D^{\mu\nu}(k) = \frac{P_L^{\mu\nu}}{k^2 - \Pi_L} + \frac{P_T^{\mu\nu}}{k^2 - \Pi_T} - \xi \frac{k^{\mu}k^{\mu}}{k^4}$$
$$P_T^{\mu\nu} = \delta^{\mu i} \delta^{\nu j} \left(\delta^{ij} - \frac{k^i k^j}{|k|^2}\right)$$
$$P_L^{\mu\nu} = -\left(g^{\mu\nu} - \frac{k^{\mu}k^{\nu}}{k^2}\right) - P_T^{\mu\nu}$$

Screening of the <A⁰A⁰> from the HDL

$$\Pi_L \sim m_{\text{Debye}}^2 \sim (g\mu)^2$$



Cf., Son, Schaefer, Wilczek, Hsu, Schwetz, Pisarski, Rischke,, showed that unscreened magnetic gluons play a role in the cooper paring.

Propagator for the gapped quasiparticles and quasiholes

$$G(p) = i \frac{p^0 - (\mu - \mathbf{p})}{(p^0)^2 - \epsilon_p^2 + i\epsilon} P_+ \gamma^0 \qquad \epsilon_p = \sqrt{(|\mathbf{p}| - \mu)^2 + \Delta^2}$$

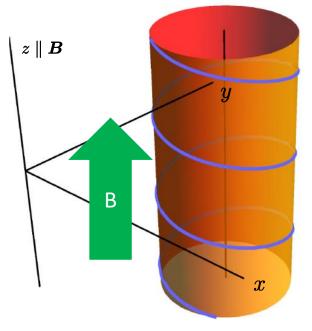
Rischke, Pisarski, ...

The LO expansion by $1/\mu$

$$p^0 = \ell^0, \quad \boldsymbol{p}^i = \mu \boldsymbol{v}_F^i + \boldsymbol{\ell}^i$$

$$G(p) = i \frac{\ell^0 + \ell_{\parallel}}{(\ell^0 - \epsilon_{\ell} + i\varepsilon)(\ell^0 + \epsilon_{\ell} - i\varepsilon)} P_+ \gamma^0$$

Landau level discretization due to the cyclotron motion



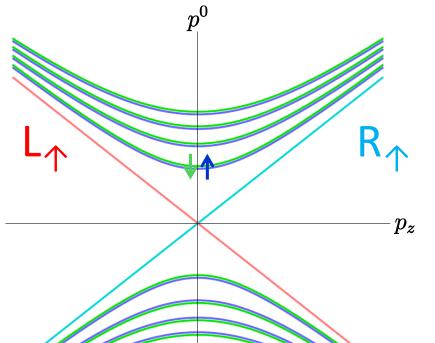
"Harmonic oscillator" in the transverse plane

Nonrelativistic:
$$\epsilon_n = \frac{p_z^2}{2m} + (n + \frac{1}{2}) \frac{eB}{m}$$

Cyclotron frequency

Relativistic: $\epsilon_n = \sqrt{p_z^2 + (2n+1)eB + m^2}$

In addition, there is the Zeeman effect.



Scaling dimensions in the LLL

When $\epsilon_{\text{LLL}} \to s \epsilon_{\text{LLL}}, p_z \to s p_z$. (p_{\perp} does not scale.)

(1+1)-D dispersion relation \rightarrow d_{ψ} = - 1/2

Four-light-Fermi operator

 $\mathcal{S}^{\text{int}} = \int dt \left[\int \frac{dp_z}{2\pi} \right]^4 \, G[\bar{\psi}_{\text{LLL}}^{(4)} \hat{\gamma}_{\parallel}^{\mu} \psi_{\text{LLL}}^{(2)}] [\bar{\psi}_{\text{LLL}}^{(3)} \hat{\gamma}_{\mu}^{\parallel} \psi_{\text{LLL}}^{(1)}] \delta(p_z^{(1)} + p_z^{(2)} - p_z^{(3)} - p_z^{(4)})$

Always marginal thanks to the dimensional reduction in the LLL.
 → Magnetic catalysis of chiral condensate.
 Chiral symmetry breaking occurs even in QED.
 Gusynin, Miransky, and Shovkovy. Lattice QCD data also available (Bali et al.).

Heavy-light four-Fermi operator

$$S_{\rm H-L}^{\rm int} = \int dt \left[\int \frac{dp_z}{2\pi} \right]^2 \left[\int \frac{d^3 \mathbf{k}}{(2\pi)^3} \right]^2 G[\bar{\psi}_{\rm LLL}^{(3)} t^a \psi_{\rm LLL}^{(1)}] [\bar{\Psi}_+^{(4)} t^a \Psi_+^{(2)}]$$

Marginal !! Just the same as in dense matter.

Analogy btw the dimensional reduction in a large B and μ

(1+1)-D dispersion relations

