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Phases of QCD matter
T

baryon chemical potential

Neutron stars 
Low-energy nuc. collisions

Early universe 
Heavy ion collisions Quark-gluon plasma

Color superconductivity

Hadrons
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Classification of phases
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• Ginzburg-Landau theory 
• Classification of phases by  

symmetry breaking patterns 

• Ex) Water 
• Liquid, vapor: continuous translational symmetry 
• Solid: discrete translational symmetry



Phases of water
P

T

Solid
Liquid

Vapor
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“Quark-hadron continuity”
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Nucleon superfluidity

Color superconductor

“CFL phase”

[Schafer, Wilczek '99]



Color superconductivity
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• Order parameter: diquark condensate

• SU(3) gauge theory with light quarks 
• up, down, strange

color flavor

Φαi = ϵαβγϵijk⟨q T
βj iγ0γ2 qγk⟩



Color-flavor locked phase
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Φαi = Δδαi

• At large densities, the most stable pairing is 

d s
u
d

u
s

• All the gluons are gapped: color SC

• SSB of global U(1): superfluidity



“Quark-hadron continuity”
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• Symmetry breaking pattern
[Schafer, Wilczek '99]

Nucleon superfluidity CFL phase



“Quark-hadron continuity”
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Pions

Vector mesons

CFL pions

Gluons

Baryons Quarks

U(1) phonons U(1) phonons



Exceptions in GL classification
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• Fractional quantum Hall effect 
• Distinct phases without change of symmetry 

• Now understood as topological order [X. G. Wen ’89]

• Features of topologically ordered states 
• Fractional statistics (anyons) 
• Degenerate ground states depending on the 

spacetime topology 
• Description by topological QFT







s-wave superconductivity
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=
Wilson loop

• Topologically ordered 
• Fractional braiding phase of vortex & particle

Vortex

Z2 braiding phase



Vortices in CFL
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• Quantized (1/3) superfluid circulation
• Color magnetic flux

[http://cua.mit.edu/ketterle_group/Nice_pics.htm]

• Rotating neutron star

[Balachandran, Digal, Matsuura '06]

Φ ≃ Δdiag (eiθ,1,1)



Fractional statistics of vortices & particles
[Cherman, Sen, Yaffe 1808.04827]
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Z3 braiding phase

=

color Wilson loop

Vortex



Nucleon superfluidity

Color superconductor

[Cherman, Sen, Yaffe 1808.04827]
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“CFL phase”

Fractional statistics of vortices & particles

Z3 braiding phase



Nucleon superfluidity

Color superconductor

[Cherman, Sen, Yaffe 1808.04827]
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“CFL phase”

Fractional statistics of vortices & particles

Z3 braiding phase



How to characterize topological order
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• Topological order: SSB of higher-form symmetry 
• A generalization of global symmetry 

• Charged objects are extended : Wilson loop, etc 
• “n-form symmetry”

[Gaiotto, Kapustin, Seiberg, Willett ’15]
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• Ex) U(1) gauge theory without matter

How to characterize topological order
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• Ex) U(1) gauge theory without matter

• Noether’s theorem 
• Ex.) conservation of electric & magnetic flux

• SSB of continuous HF symmetry 
• Nambu-Goldstone boson (ex. photon)

• SSB of discrete HF symmetry 
• topological order 
• s-wave SC: SSB of Z2 one-form symmetry

How to characterize topological order



Topological order of 
s-wave superconductors

!19



Low-energy theory for SC
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a = aμdxμ b = bμdxμ

∫ b ∧ da = ∫ d3x ϵμνρbμ∂νaρ

k = 2

We consider SC in 2+1 dimensions.  
At low energies below SC gap, the system is 
described by the so-called BF theory at level 2



Low-energy theory for SC
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• Fractional statistics of vortices & particles

• Ground-state degeneracy  
depending of space-time topology

This theory describes 



Physical observables
Wilson loop operator Vortex operator

W(C) = exp i∫C
a V(C) = exp i∫C

b
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represents pair-creation/annihilation process 
 of charged particles/vortices



Higher-form symmetries
• Two emergent       one-form symmetriesℤk
• Charged objects are Wilson loops & vortex loops

W(C) ↦ e2πi
k W(C) V(C) ↦ e2πi

k V(C)
• Fractional statistics
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e2πi
k=

V(C)W(C) W(C)V(C)



Higher-form symmetries
• Two emergent       one-form symmetriesℤk
• Charged objects are Wilson loops & vortex loops

W(C) ↦ e2πi
k W(C) V(C) ↦ e2πi

k V(C)

= 1=
• Both symmetries are spontaneously broken

W(C) V(C)
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Topological ground state degeneracy
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Those states have the same energy,  
because vortex operator is topological 

(it commutes with Hamiltonian)

V(C)|Ω⟩ =

|Ω⟩ =



Low-energy effective theory for CFL
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• We consider degenerate masses for u, d, s 
• Massless degrees of freedom: 

U(1) phonons

• Correlation of U(1) circulation  
                    & color holonomy

• Fractional statistics

[Hirono, Tanizaki, PRL’19]

• To study the topological nature, we analyze the 
higher-form symmetry of CFL



Low-energy effective theory for CFL
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[Hirono, Tanizaki, PRL’19]

• Gauged GL Lagrangian

ℒ = 1
2g2 |G |2 + | (d + iaSU(3))Φ |2 + Veff[Φ]

Φ = Δ diag [eiϕ1, eiϕ2, eiϕ3]

ℒ = 1
2g2

0
( |dϕ1 + a1 |2 + |dϕ2 − a1 + a2 |2 + |dϕ3 − a2 |2 )

• Fix the gauge so that 
• The resulting Lagrangian is 

τ1 = diag (1, − 1,0) τ2 = diag (0,1, − 1)
where Cartan generators are taken as 

G = daSU(3) + i(aSU(3))2
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• Topological BF theory coupled with massless 
superfluid phonons

• not square 
• dim coker K  

       = (# of massless phonons)

Phonons BF term

Low-energy effective theory for CFL
[Hirono, Tanizaki, PRL’19]

S = Sphonon[bi] + i
2π

KiA ∫ bi ∧ daA

K = (
1 0

− 1 1
0 − 1)

bi = 1
2 (bi)μνdxμ ∧ dxν :2-form fields dual to ϕi



!29

Phonons BF term

Low-energy effective theory for CFL
[Hirono, Tanizaki, PRL’19]

S = Sphonon[bi] + i
2π

KiA ∫ bi ∧ daA

Sphonon[bi] = g 2
0

8π2 ∫ d(b0)i ∧ ⋆d(b0)i

(b0)i = Pijbj Pij = δij − [KK+ ]ij

K+
Ai is the Moore-Penrose inverse of KiA

K+ = (2/3 − 1/3 − 1/3
1/3 1/3 − 2/3)
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• Physical observables

Phonons

Low-energy effective theory for CFL

color Wilson loops

vortex operators

[Hirono, Tanizaki, PRL’19]

S = Sphonon[bi] + i
2π

KiA ∫ bi ∧ daA

S : worldsheet of a vortex
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Low-energy effective theory for CFL

• The system has a      two-form symmetry

• Rotate the phase of vortex operators by       phase
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[Hirono, Tanizaki, PRL’19]

ℤ3

ℤ3

bi ↦ bi + K+
Ai λ dλ = 0, ∫S

λ ∈ 2πℤ
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Low-energy effective theory for CFL

[Hirono, Tanizaki, arXiv:1904.08570]

•  Braiding phase of particles & vortices

[Hirono, Tanizaki, PRL’19]

• Noting that 

Wilson loops are the generators of Z3 symmetry 
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Low-energy effective theory for CFL
[Hirono, Tanizaki, PRL’19]

• Noting that 

Wilson loops are the generators of Z3 symmetry 

=



!34

• Z3 2-form symmetry                 2-form symmetry

• Continuous 2-form symmetry cannot be broken 
in 4D (Coleman-Mermin-Wagner theorem)

• Z3 2-form symmetry is unbroken

Low-energy effective theory for CFL
[Hirono, Tanizaki, PRL’19]



Physical consequences
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• Braiding phase is because of  
 an emergent Z3 two-form symmetry 

• This symmetry is not spontaneously broken 

• CFL phase is not topologically ordered 

• Nucleon superfluidity is not either:  
   Continuity nucleon SF & color SC  
   including higher-form symmetries



Summary
• GL-classification has exceptions: topological order 
• Spontaneous breaking of a (discrete) higher-form 

symmetry leads to topological order 
• To test the “quark-hadron continuity”, we analyzed the 

symmetries of low-energy EFT of CFL phase including 
higher-form symmetries 

• Z3 braiding phase of color Wilson loop & vortex  
  = consequence of an emergent Z3 symmetry 

• Z3 2-form symmetry is unbroken: no T.O. in CFL  
• Quark-hadron continuity is still a consistent scenario
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