QCD Topology to High Temperatures via Reweighting

P. Thomas Jahn, 1 Guy D. Moore, 1 and Daniel Robaina 2
1 Institut für Kernphysik, Technische Universität Darmstadt, Germany
2 Max-Planck Institute of Quantum Optics, Garching, Germany

Introduction
• The QCD axion is a hypothetical particle, predicted in models which solve the strong CP problem via the Peccei-Quinn mechanism [1] and is also a dark matter candidate [2].
• There is currently less of experimental effort to detect axions and theoretical effort to determine its properties, especially its mass.
• From a theoretical point of view, the axion properties depend on the QCD topological susceptibility

\[\chi_{\text{top}} = \frac{1}{2} \left(\frac{d}{d\mu} \left(F_\mu \right) \right) \]

up to temperatures of \(T_\chi \approx 7 T_c \) [3] with \(\chi \) the four-dimensional volume, \(Q \) the topological charge, and \(F_\mu \) the dual field-strength tensor.

• Topologically non-trivial fields are instantons/calorons with weight

\[\exp(-\chi) = \exp\left(-\frac{8\pi^2 |Q|^2}{g^2}\right) \to 0 \quad \text{as} \quad T \to \infty \quad (g \to 0). \]

• Since topological phenomena are inherently non-perturbative, lattice QCD is the method of choice. However, at high temperatures calorons are badly suppressed and it becomes impossible to measure fluctuations of \(Q \) with standard lattice techniques.

Reweighting Method
• In order to artificially enhance the number of caloron configurations, we developed a technique based on reweighting [4].

\[\langle q^2 \rangle = \frac{\sum q^2 \exp(-\chi)}{\sum \exp(-\chi)} \Rightarrow \langle q^2 \rangle \approx q^2 \sum Q^2 \exp(-\chi) \]

we apply importance sampling with a modified weight by introducing the reweighting function \(W(Q) \):

\[\langle q^2 \rangle = \frac{\int \sum q^2 \exp(-\chi) \exp(W)}{\int \sum \exp(-\chi) \exp(W)} \Rightarrow \langle q^2 \rangle \approx \frac{\sum Q^2 \exp(W)}{\sum Q_0 \exp(W)} \]

• Since the topological charge is badly contaminated by UV fluctuations, we apply gradient flow to both observable \(Q \) (large amount) and the reweighting variable \(Q' \) (small amount).

• The reweighting technique is implemented via an additional Metropolis step.

• Using reweighting, the number of caloron configurations can be significantly enhanced if the reweighting function is chosen correctly. We developed an automated way to build the reweighting function:
 - perform a separate Monte Carlo simulation only for building \(W \)
 - constrain to the interval \([0,1]\) which is sufficient for high \(T \)
 - start with a flat function \(W(Q') = 0 \)
 - at each Monte Carlo step measure \(Q' \) and lower \(W \) at the measured value
 - make the procedure converge by reducing the amount of lowering \(W \) after the whole range was explored

References