On the multiple thimbles decomposition for the Thirring model
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Thimble regularization Critical points

m Main idea: complexification of d.o.f. + deformation of integration domain m The critical points are found by imposing
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m The thimble 7, attached to a critical point p, is the union of the steepest The second term depends on the fields only through the sum s = 3 z,, then
ascent paths leaving p, it must be sin(z,) = sin(z) Yn and z, can be either z or 7 — z. Following
dzi 98 Lo (o) = 20 Ref. [3] we define n_ as the number of flipped components.
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) . . L m To find out which thimbles give relevant contributions we look at the S; vs u
Along the flow, the imaginary part of the action is constant.

plot for possible Stokes phenomena, after which the intersection number can

m The tangent space at p,- is spanned by the Takagi vectors, which can be change. We focus on the critical points in the n_ = 0 sector for L = 2, g = 1
found by diagonalizing the Hessian at the critical point and u=0.0...2.0:
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Sampling thimbles
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® A natural parametrization for a point on the thimble is z € J, < (7, 1), ‘
where 71 defines the direction on the tangent plane along which the path W g8 ¢ B R e T e
leaves the critical point and 7 is the integration time.

Numerical integration

m In this parametrization, the thimbles decomposition of an expectation value

{O) takes the form m For L = 2 and 8 = 1 we have only 2 degrees of freedom and we can

Zo tig [ DA A7n} [ di 54100 0 oD integrate numerically. Results from 1 (red data) and 3 thimbles (blue data):
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where the effective action S, ¢ ¢(71,t) = Sg(#A,t) — In|det V (7, 1)| and the A ‘
residual phase e/ = ¢l arg(detV(N) are obtained from the parallel | .|

transported basis of the tangent space V (7, 1). i AT I ey
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One can notice a strong dependence of Z,
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Preliminary results from MC

m Results for L =2 and 8 = 1 from 1 (red data) and 3 thimbles (blue data):
m This can be generalized to more than one thimble:
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Weights

How to compute the weights of the thimbles? . . m Results for L =4 and 8 = 1 from 1 (red data) and 3 thimbles (blue data):
m If only two thimbles are relevant, one may give up prediction power on one

observable and compute the relative weight from -~ = =

(0 = 10Z0(0e")o + n12Z12(0e )12 _ (0e)o + a(0c)1y N N :’ . :
noZo(e)o + nipZia(e ) (e)o + ale) 1 > 5 o .#4-_\ :
Applied to QCD-(0+1) in Ref. [1]. L ¥
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Exploring alternative approaches

-

m The idea is to apply Taylor expansion in a region where there is a simpler
thimble decomposition. The rationale for it: Stokes phenomena encode
discontinuities in the thimble decomposition, not in the observables.

From (1) and (2) one obtains 5 Z,UZG , which is what we want up to a

normalization factor. Applied t(:) I-ﬁ)QCD in Ref. [2].

(0 + 1) - dimensional Thirring model

For L = 2 only one thimble gives a rel- =
m Let’s consider the (0 + 1) - dimensional Thirring model evant contribution at § = 1, g = 0.15. g

5= (1= cos(zy) + log detD Here we show the results for § = 1 and o
u = 0.30, 0.45 computed from a Taylor "
expansion at u = 0.15 (blue data) on that {

It has been shown before that one thimble is not enough to capture the full single thimble. z
content of the theory (see Ref. [3]; see also Ref. [4]).

1
detD = F(coxh(Lﬁ apit Z Zp) + cosh(Lm)) , i = ap , i = asinh(am)

Conclusions
m Can we collect contributions coming from more than one thimble with our m We have studied the (0 + 1)-dimensional Thirring model for L = 2 and
approach? L = 4 at a strong coupling g = 1.
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m We started applying Taylor expansions (this is a one thimble computation!)




