
The Model 

We study the 1D gauged bosonic matrix model with d=9 
matrices, which is the bosonic version of the famous 
BFSS matrix model[1], related to the gauge/gravity duality.

This model is also obtained as the high-temperature limit 
of the 2D maximal supersymmetric Yang-Mills 
compactified on S1, which has a dual gravitational 
description.

The bosonic matrix model with 9 
matrices has a first order phase 
transition at finite temperature
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1
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*in addition, check out the nearby poster #33 by Hiromasa 
Watanabe for more information about partial deconfinement
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R2 ≡
1
N

d

∑
I=1

Tr X2
I

R2( |P | , T ) = R2
0 + g(T ) ⋅ |P |2

P ≡
1
N

tr U

U ≡ 𝒫 exp (i∫
β

0
dtA(t))

Large-d 
expansion

Phase transitions 
The phase transition in this model has been studied 
before[2] at finite matrix size N, and finite lattice spacing 
L-1. This 1D bosonic model admits an analytical treatment 
at large N and large number of matrices d[3].

✦Analytical results at large d predict two transitions at 

close temperatures T1 and T2, one of 2nd order and one 
of 3rd order. Is d=9 large enough?


✦Numerical results at N=32 suggest a qualitatively similar 
picture. Is N=32 large enough? 

We discovered a different phase structure in the large-N 
limit at d=9, with a single 1st order transition:
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Numerical results 

★Monte Carlo method to obtain high-statistics samples 
of the system’s configurations at various values of the 
parameters (N,L,T). 

★Order parameter for the transition |P|, as well as the 

energy E and the “extent of space” R2 are monitored. 


When N>32, the behavior of all observables becomes 
sharper around the transition. Indicates the possibility of 
a discontinuity or “jump” between phases.

We check this by looking at histograms: we see a clear 
doubly-peaked distribution, corresponding to two 
phases, confined and deconfined. Hysteresis analyses 
also support this claim all the way to N=64 and L=32.


The hysteresis corresponds to an unstable phase where 
the U(M) group with M<N is deconfined: partial 
deconfinement[4]. 
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The distribution of the 
Polyakov loop eigenvalues 
is non uniform and non 
gapped:
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