Hadron and Nuclear Physics for Oscillation Experiments

Luis Alvarez Ruso

IFIC

Consejo Superior de Investigaciones Científicas

Universitat de València
Introduction

- **ν** cross sections are **crucial** to achieve the **precision goals** of oscillation experiments

\[
\frac{N_{\text{events}}(E_{\nu})}{N_{\text{events}}(E_{\nu})} = \frac{\int \sigma(E'_{\nu}) \Phi(E'_{\nu}) P(E_{\nu} | E'_{\nu}) P_{\text{osc}}(E'_{\nu}) dE'_{\nu}}{\int \sigma(E'_{\nu}) \Phi(E'_{\nu}) P(E_{\nu} | E'_{\nu}) dE'_{\nu}}
\]

- **Need for theory?**
 - Measurements are not (cannot be) comprehensive
 - the same (semi)-inclusive cross section can correspond to **different exclusive final states**, depending on the reaction mechanism
 - measurements (partially) rely on **simulations ≈ theory** to determine efficiency, acceptance, …
 - \(E_{\nu}\) is not known: reconstructed using kinematics and/or calorimetry
 - \(\sigma(\nu_{\mu})\) to \(\sigma(\nu_{e})\) extrapolations
 - **Neutrino** c.s. mismodeling could lead to **unacceptably large** systematic uncertainties or biased measurements

F. Sanchez @ NuPhys2015
Nucleon axial form factor

- Fundamental **nucleon** property
- Main source of uncertainty for **QE scattering** on nucleons:

 CCQE : \(\nu(k) + n(p) \rightarrow l^-(k') + p(p') \)
 \(\bar{\nu}(k) + p(p) \rightarrow l^+(k') + n(p') \)

 NCE : \(\nu(k) + N(p) \rightarrow \nu(k') + N(p') \)
 \(\bar{\nu}(k) + N(p) \rightarrow \bar{\nu}(k') + N(p') \)

 \(q = k - k' = p' - p \)

- Largest contribution at **T2K, MicroBooNE**
- Used for kinematic **\(E_\nu \)** reconstruction:

\[
E_\nu^{QE} = \frac{2m_nE_\mu - m^2_\mu - m^2_n + m^2_p}{2(m_n - E_\mu + p_\mu \cos \theta_\mu)}
\]

- Input in models of non-resonant inelastic reactions (**meson production**) and **two-nucleon currents**
Nucleon axial form factor

- What is known:
 - $F_A(0) = g_A \leftarrow \beta$ decay
 - $F_A(\infty) \sim Q^{-4} \leftarrow \text{QCD}$

- Main source of information: bubble chamber (ANL, BNL, FNAL) data

- Dipole ansatz: Bodek et al., EPJC 53 (2008)
 \[
 F_A(Q^2) = g_A \left(1 + \frac{Q^2}{M_A^2} \right)^{-2} \quad \langle r_A^2 \rangle = \frac{12}{M_A^2}
 \]

- z-expansion: Meyer et al., PRD 93 (2016)

- Neural networks + Bayesian statistics: LAR, Graczyk, Saúl-Sala, PRC 99 (2019)

- All methods obtain similar $F_A(Q^2)$…
Nucleon axial form factor

- What is known:
 - $F_A(0) = g_A \leftarrow \beta$ decay
 - $F_A(\infty) \sim Q^{-4} \leftarrow$ QCD

- Main source of information: bubble chamber (ANL, BNL, FNAL) data

- Dipole ansatz: Bodek et al., EPJC 53 (2008)

 $$F_A(Q^2) = g_A \left(1 + \frac{Q^2}{M_A^2}\right)^{-2}$$

 $$\langle r_A^2 \rangle = \frac{12}{M_A^2}$$

 $$\langle r_A^2 \rangle = 0.453(12) \text{ fm}^2$$

- z-expansion: Meyer et al., PRD 93 (2016)

 $$\langle r_A^2 \rangle = 0.46(22) \text{ fm}^2$$

- Neural networks + Bayesian statistics: LAR, Graczyk, Saúl-Sala, PRC 99 (2019)

 $$\langle r_A^2 \rangle = 0.471(15) \text{ fm}^2 \leftarrow \text{ANL only so far}$$

- All methods obtain similar $F(Q^2)$…

- …but with different errors
QE scattering on the nucleon

- **z-expansion** Meyer et al., PRD 93 (2016)

- At $E_\nu \sim 1$ GeV, $\sigma(\text{CCQE})$ has $\approx 10\%$ error

- More precise information about F_A is needed
 - Direct or indirect CCQE measurement on n/p
 - Lattice QCD
- g_A : lower than exp. values have been recurrently obtained

- Recent progress:
 - improved algorithms for a careful treatment of excited states
 - low pion masses

Constantinou, PoS CD15 (2015) 009
Recent progress:

- Alexandrou et al., PRD 96 (2017)
- Capitani et al., arXiv:1705.06186
- Gupta et al., PRD 96 (2017)

Baryon ChPT analysis: Yao, LAR, Vicente Vacas, PRD 96 (2017)

- $O(p^3)$, $Q^2 < 0.36 \text{ GeV}^2$, $130 \text{ MeV} < M_\pi < 473 \text{ MeV}$, explicit $\Delta(1232)$

- $g_A = 1.237(74)$, $<r_A^2> = 0.263(38) \text{ fm}^2$
Recent progress:

- Alexandrou et al., PRD 96 (2017)
- Capitani et al., arXiv:1705.06186
- Gupta et al., PRD 96 (2017)

More recent progress:

- **A percent-level determination of the nucleon axial coupling from QCD**
 - Chang et al., Nature 558 (2018)

- **Nucleon form factors at low Q^2 at the physical point**
 - Shintani et al., PRD 99 (2019)
1π production on the nucleon

\[\nu_l \ N \rightarrow l \ \pi \ N' \]

- **CC:**
 \[
 \nu_\mu \ p \rightarrow \mu^- \ p \ \pi^+ , \quad \bar{\nu}_\mu \ p \rightarrow \mu^+ \ p \ \pi^- \\
 \nu_\mu \ n \rightarrow \mu^- \ p \ \pi^0 , \quad \bar{\nu}_\mu \ p \rightarrow \mu^+ \ n \ \pi^0 \\
 \nu_\mu \ n \rightarrow \mu^- \ n \ \pi^+ , \quad \bar{\nu}_\mu \ n \rightarrow \mu^+ \ n \ \pi^-
 \]

- **source of CCQE-like events (in nuclei)**

- **needs to be subtracted for a good \(E_\nu \) reconstruction**

- **NC:**
 \[
 \nu_\mu \ p \rightarrow \nu_\mu \ p \ \pi^0 , \quad \bar{\nu}_\mu \ p \rightarrow \bar{\nu}_\mu \ p \ \pi^0 \\
 \nu_\mu \ p \rightarrow \nu_\mu \ n \ \pi^+ , \quad \bar{\nu}_\mu \ n \rightarrow \bar{\nu}_\mu \ n \ \pi^0 \\
 \nu_\mu \ n \rightarrow \nu_\mu \ n \ \pi^0 , \quad \bar{\nu}_\mu \ n \rightarrow \bar{\nu}_\mu \ n \ \pi^0 \\
 \nu_\mu \ n \rightarrow \nu_\mu \ p \ \pi^-, \quad \bar{\nu}_\mu \ n \rightarrow \bar{\nu}_\mu \ p \ \pi^-
 \]

- **e-like background to \(\nu_\mu \rightarrow \nu_e \) (T2K, NOvA)**
$\nu_l \, N \rightarrow l \, \pi \, N'$

- From Chiral symmetry:

Weak pion production in ChPT

- First comprehensive study in ChPT
- Yao, LAR, Hiller, Vicente Vacas, PRD 98 (2018);
 Yao, LAR, Vicente Vacas, PLB 794 (2019)
- EOMS, explicit $\Delta(1232)$, $O(p^3)$ in the δ-counting: $\delta = m_\Delta - m_N \sim O(p^{1/2})$

 - \[\begin{align*}
 \text{(a)} & \quad \text{(b)} & \quad \text{(c)} & \quad \text{(d)} \\
 \text{(e)} & \quad \text{(f)} & \quad \text{(g)} & \quad \text{(h)} \\
 \text{(i)} & \quad \text{(j)} & \quad \text{(k)} & \quad \text{(l)}
 \end{align*} \]

- **LECs**: 22 in total
 - 7 unknown (not very relevant)
 - 4 can be extracted from pion electroproduction
 - Information about remaining 3 could be obtained from new close-to-threshold measurements of ν-induced π production on protons

- Valid only close to threshold
- Benchmark for phenomenological models
1π production on the nucleon

- Pheno models rely on (non-ν) data as input and/or validation
- Vector current can be constrained with $\gamma N \rightarrow N \pi$, $e N \rightarrow e' N \pi$

- e.g. Dynamical Coupled Channel (DCC) Model Nakamura et al., PRD92 (2015)
1π production on the nucleon

- Pheno models rely on (non-ν) data as input and/or validation
- Vector current can be constrained with $\gamma N \rightarrow N \pi$, $e N \rightarrow e' N \pi$
- Axial current at $q^2 \rightarrow 0$ can be constrained with $\pi N \rightarrow N \pi$ (PCAC)

\[
\left. \frac{d\sigma_{CC\pi}}{dE_l d\Omega_l} \right|_{q^2=0} = \frac{G_F^2 V_{ud}^2}{2\pi^2} \frac{2f^2_{\pi}}{\pi} \frac{E^2_{l}}{E_{\nu} - E_l} \sigma_{\pi N}
\]

- e.g. Dynamical Coupled Channel (DCC) Model Nakamura et al., PRD92 (2015)
1π production on the nucleon

- **Pheno models** rely on (non-ν) data as input and/or validation

- **Vector current** can be constrained with $\gamma N \rightarrow N \pi$, $e N \rightarrow e' N \pi$

- **Axial current** at $q^2 \rightarrow 0$ can be constrained with $\pi N \rightarrow N \pi$ (PCAC)

\[
\frac{d\sigma_{CC\pi}}{dE_l d\Omega_l} \bigg|_{q^2=0} = \frac{G_F^2 V_{ud}^2}{2\pi^2} \frac{2f_{\pi}^2}{\pi} \frac{E_l^2}{E_\nu - E_l} \sigma_{\pi N}
\]

- Very limited information about the **axial current** at $q^2 \neq 0$

- Some on $N-\Delta(1232)$ from ANL and BNL data on

 $\nu_\mu \ d \rightarrow \mu^- \pi^+ \ p \ n$

\[
C_5^A = C_5^A(0) \left(1 + \frac{Q^2}{M_{A\Delta}^2}\right)^{-2}
\]

 $M_{A\Delta} = 0.95 \pm 0.06 \text{ GeV}$

 LAR, Hernandez, Nieves, Vicente Vacas, PRD93(2016)

 Hernandez, Nieves, PRD 95 (2017)

- **Little** (no) sensitivity to heavier baryon resonances

- Lattice QCD
Inelastic form factors & LQCD

- N-Δ axial form factors in LQCD

Alexandrou et al., PRD83 (2011)

"The Δ is hard enough..." C. Morningstar @ NSTAR 2019
1π production on the nucleon

- Pheno models rely on (non-ν) data as input and/or validation
 - Vector current can be constrained with \(\gamma N \rightarrow N \pi \), \(e N \rightarrow e' N \pi \)

- Axial current at \(q^2 \rightarrow 0 \) can be constrained with \(\pi N \rightarrow N \pi \) (PCAC)

\[
\frac{d\sigma_{CC\pi}}{dE_l d\Omega_l} \bigg|_{q^2=0} = \frac{G_F^2 V_{ud}^2}{2\pi^2} \frac{2f_\pi^2}{\pi} \frac{E_l^2}{E_\nu - E_l} \sigma_{\pi N}
\]

- Very limited information about the axial current at \(q^2 \neq 0 \)
 - Some on \(N-\Delta(1232) \) from ANL and BNL data on \(\nu_\mu d \rightarrow \mu^- \pi^+ p n \)
 - Little (no) sensitivity to heavier baryon resonances
 - Lattice QCD
 - Direct or indirect CC1π measurement on n/p

- There are hints (T. Sato @ ECT* 2019) that a \(q^2 \) dependence similar to the one exhibited by vector form factors might be more realistic
Neutrino interactions on nuclei

- Multiscale (even at a given E_{ν}), multi-nucleon problem

- Shell structure, collective excitations, QE peak, …

- Initial state description: non-relativistic

- Final state interactions: (relativistic) NN, πN, …

B. Frois, NPA 434 (1985)
QE scattering

Initial nucleon:

- **Local Fermi Gas**
 - Fermi motion: \(p_F(r) = \left[\frac{3}{2} \pi^2 \rho(r) \right]^{1/3} \)

- *(Relativistic)* mean field potential
 - Schrödinger/Dirac eq. \(\Rightarrow \) **bound-state** wave functions

- **Spectral function**

 \[A(p) = \mp \frac{1}{\pi} \frac{\text{Im} \Sigma(p)}{[p^2 - M^2 - \text{Re} \Sigma(p)]^2 + [\text{Im} \Sigma(p)]^2} \]

- \(\text{Im} \Sigma = 0 \) \(\Rightarrow \) **mean-field** approximation

- \(\text{Im} \Sigma \leftrightarrow \text{NN} \) interactions \(\Rightarrow \) **short-range** correlations
QE scattering

Final nucleon:

- Local Fermi Gas
 - Pauli blocking: $p_F(r) = \left[\frac{3}{2} \pi^2 \rho(r) \right]^{1/3}$
- Plain waves
- Distorted waves
 - Schrödinger/Dirac eq. ⇒ continuum wave functions
 - Relativistic mean field for both initial and final nucleons ⇒ realistic scaling function

R. Gonzalez et al., PRC 94 (2014)
QE scattering

Final nucleon:

- Local Fermi Gas
 - Pauli blocking: $p_F(r) = \left(\frac{3}{2} \pi^2 \rho(r)\right)^{1/3}$
- Plain waves
- Distorted waves
 - Schrödinger/Dirac eq. ⇒ continuum wave functions
 - Approximate spectral functions
 - Improves the description of (e,e') at low-momentum transfers
 Ankowski et al., PRD 91 (2015)
QE scattering

Final nucleon:
- Local Fermi Gas
 - Pauli blocking: \(p_F(r) = \left[\frac{3}{2} \pi^2 \rho(r) \right]^{1/3} \)
- Plain waves
- Distorted waves
 - Schrödinger/Dirac eq. \(\Rightarrow \) continuum wave functions
 - Approximate spectral functions
 - Improves the description of (e,e’) at low-momentum transfers
 Ankowski et al., PRD 91 (2015)

Exclusive final states:
- QM: Distorted waves with complex optical potentials: 1N knockout
- Semi-classical:
 - Cascade: straightline trajectories + NN elastic and inelastic collisions
 - Transport (GiBUU): trajectories in a (x,p) dep. potential + NN collisions
1π production on nuclei

- **GiBUU** Leitner, LAR, Mosel, PRC 73 (2006)
 - Effects of FSI on pion kinetic energy spectra
 - Strong absorption in Δ region
 - Side-feeding from dominant π^+ into π^0 channel
 - Secondary pions through FSI of initial QE protons

\[v_\mu + ^{56}\text{Fe} \rightarrow \mu^- \pi X \quad E_\nu = 1 \text{ GeV} \]
\[\pi \] production on \(^{12}\)C

Comparison to MiniBooNE:
Lalakulich, Mosel, PRC87 (2013)
\(\text{CC}_{\pi^0} \) data: Aguilar-Arevalo, PRD83 (2011)

Comparison to T2K:
Mosel, Gallmeister, PRC99 (2019)
\(\text{CC}_{\pi^\pm} \) data: R. Castillo, PhD Thesis (2015)
In spite of flux difference, *MiniBooNE* and *MINERvA* data probe the same dynamics and should be strongly correlated [Sobczyk, Zmuda, PRC 91 (2015)].
Two-nucleon currents

- MiniBooNE data for “CCQE” 2D cross section:
 - can be explained with a Relativistic Fermi Gas model and $M_A \approx 1.35 \text{ GeV}$
 - in disagreement with $M_A \approx 1 \text{ GeV}$ from bubble chamber data
 - but consistent with F_A from the z-expansion

Aguilar-Arevalo et al., PRD81 (2010)
Two-nucleon currents

- **2-nucleon EW currents** exist (are allowed by symmetries)

- Sizable contribution can be inferred from $A(e,e')X$

References

- Megias et al., PRD 94 (2016)
- Gallsmeiter et al., PRD 94 (2016)
Two-nucleon currents

- 2-nucleon EW currents exist (are allowed by symmetries)

- together with better QE nuclear models can explain MiniBooNE data with $M_A \approx 1$ GeV

Martini et al.
Nieves et al.
Two-nucleon currents

- Large implications for oscillation measurements
- Bias in (kinematic) E_ν reconstruction

$$E_{\nu}^{QE} = \frac{2m_n E_\mu - m_\mu^2 - m_n^2 + m_p^2}{2(m_n - E_\mu + p_\mu \cos \theta_\mu)}$$

Martini et al., PRD 87 (2013)
Systematic errors are expensive: theory can help…

“(...) the impact of pion and nucleon production through higher-energy inelastic interactions could play a key role. For instance, particles produced in nuclear interactions below detection threshold, or neutrons escaping detection, can lead to a large amount of missing energy. These effects are difficult to quantify as they rely on the predictions of a given nuclear model. Unless they are kept under control, they will generate a bias in the determination of neutrino energy towards lower energies, which in turn would translate into a wrong determination of the value of δ_{CP}.”

R. Acciarri et al., arXiv:1512.06148