Precise Neutron Lifetime Measurement Using Pulsed Neutron Beams at J-PARC

N. SUMI¹, K. HIROTA², G. ICHIKAWA³, T. INO³, Y. IWASHITA⁴, S. KAJIWARA⁵, Y. KATO⁵, M. KITAGUCHI⁶, K. MISHIMA³, K. MORIKAWA⁷, T. MOGI⁵, H. OIDE⁸, H. OKABE⁷, H. OTONO⁹, T. SHIMA², H. M. SHIMIZU⁶, Y. SUGISAWA¹⁰, T. TANABE¹¹, S. YAMASHITA¹¹, K. YANO¹ and T. YOSHIOKA⁹

¹Department of Physics, Kyushu University
²Research Center for Nuclear Physics, Osaka University
³KEK, High Energy Accelerator Research Organization
⁴Institute for Chemical Research, Kyoto University
⁵Department of Physics, The University of Tokyo
⁶Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University
⁷Department of Physics, Nagoya University
⁸Department of Physics, Tokyo Institute of Technology
⁹Research Center for Advanced Particle Physics, Kyushu University
¹⁰Institute of Applied Physics, University of Tsukuba
¹¹International Center for the Elementary Particle Physics, The University of Tokyo

J-PARC Symposium 2019 @ Tsukuba 26/Sep./2019 PN/MLF-SY: Symmetry in particle and nuclear physics

Neutron lifetime

The neutron decay with a mean lifetime of 879.4 ± 0.6 sec.

$$n \to p + e^- + \overline{\nu}_e$$

- The lifetime has been measured by two types of method.
 - Beam method count dead neutrons.
 - Storage method count living neutrons.

The discrepancy (8.6 sec or 4.0σ) of these two methods is a long time problem.

Beam method

٠

Measurement of the neutron lifetime by counting trapped protons in a cold neutron beam. J. Nico et al. Physical Review C 71.5 (2005): 055502.

$\tau_n = 886.6 \pm 1.2$ (stat) ± 3.2 (syst) sec

Improved determination of the neutron lifetime. A. T. Yue et al., Physical review letters 111.22 (2013): 222501. $\tau_n = 887.7 \pm 1.2$ (stat) ± 1.9 (syst) sec

Monochromatic neutron beam was transported to the magnetic trap.

- Neutron flux was monitored by a ⁶Li and detectors.
- Protons from the neutron decays trapped in the magnetic and electric field.
- Stored protons are released and detected by a proton detector.

PNPI/ILL Large storage bottle New neutron lifetime measurements with the big gravitational trap and review of neutron lifetime data. Serebrov, A. P. et al., KnE Energy & Physics, 3(1) (2018) 121-128. $\tau_n = 881.5 \pm 0.7$ (stat) ± 0.6 (syst) sec Insertable Neutron Detector LANL Magnetic Trap Halbach Array Elevated Normalizatio Measurement of the neutron lifetime using an asymmetric Monitor "Active magneto-gravitational trap and in situ detection. Cleaner R. W. Pattie Jr. et al., Science 10.1126/science.aan8895 (2018). Cleaner **External Holding Field Windings** Trap doo $\tau_n = 877.7 \pm 0.7$ (stat) $+0.4/_{-0.2}$ (syst) sec neter PNPI/ILL Magnetic bottle Measurement of the neutron lifetime Lift cylinder trap use Mechanical shutter with ultra-cold neutrons stored in a magneto-gravitational trap. Absorber Ezhov, V. F. et al., JETP Letters (2018) 1-6.

> Permanen magnets and poles

> > ³He detecto

Outer solenoid

solenoid

 $\tau_n = 878.3 \pm 1.6$ (stat) ± 1.0 (syst) sec

Physics motivation

Big bang nucleosynthesis

- Light elements (A≤7) were created in 10³ seconds after the big bang. Abundance of them is calculated by
 - baryon-to-photon ratio
 - nuclear cross sections
 - neutron lifetime.

٠

- A recent observation¹ has a small inconsistency with the standard cosmology. Effective neutrino generation $N_{eff} = 3.51 \pm 0.35$ is 1.5σ deviation from 3.
- CMB+BAO observation² independently result Neff = 3.26 ± 0.28 which has 1.0σ deviation from 3.

10⁻¹

10⁻²

10⁻³

ч

n

⁴He

D

6

Be

Unitarity of CKM matrix

Neutron decay is one way to verify the unitarity of the CKM matrix (Cabibbo-Kobayashi-Maskawa).

- Calculation of V_{ud} from neutron decay is simpler than nuclear ones but parameters have larger uncertainty.
 - Neutron lifetime τ_n (0.07%)
 - · Axis/vector coupling constants $\lambda = G_A/G_V$ (0.18%) $|V_{ud}|^2 = \frac{(4908.7 \pm 1.9) \text{ sec}}{\tau_m (1 + 3\lambda^2)}$

The parameters summarized by PDG2019 is consistent with unitarity.

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9994 \pm 0.0005$$

Unitarity of CKM matrix : V_{ud} and λ

Unitarity of CKM matrix : V_{ud} and λ

Unitarity of CKM matrix : V_{ud} and λ

Neutron dark decay

Neutron dark decay

by previously unobserved dark matter decay modes with **1%** of usual beta decay.

- Three decay mode candidates, where χ and ϕ are dark matters
 - $n \to \chi \gamma$ (937.900 MeV < m_{χ} < 938.783 MeV)
 - $n \to \chi e^+ e^-$ (937.900 MeV < m_{χ} < 938.543 MeV)
 - $n \to \chi \phi$ (937.900 MeV < $m_{\chi} + m_{\phi} < 939.565$ MeV)

The arrowed mass ranges are very short.

• These boundaries come from the stability of proton and ⁹Be.

Decay mode : $n \rightarrow \chi \gamma$

- The predicted energy range of gamma ray is $0.782 \text{ MeV} < E_{\gamma} < 1.664 \text{ MeV}$.
- The dark decay emits monochromatic gamma ray.
 - No gamma ray peak was observed with a germanium detector.

Decay mode : $n \rightarrow \chi e^+ e^-$

- They searched dark decay branch, $n \rightarrow \chi e^+ e^-$, in the electron spectrum data taken for λ measurement (PERKEO-II).
- Constraints on the Dark Matter Interpretation $n \rightarrow \chi e^+ e^$ of the Neutron Decay Anomaly with the PERKEO II experiment
- This work constraints electrons energy for $37.5 \text{ keV} < E_{e^+e^-} < 664 \text{ keV}$ with 5σ .
- $E_{e^+e^-} < 30 \text{ keV}$ is still alive.

unten:

N N

Phys. Rev. Lett. **122**, 222503

Decay mode : $n \rightarrow \chi \phi$

- Neutron star gives a constraint on characteristics of χ .
- Suppose $m_{\gamma} \sim m_n$, neutron star whose mass is over 0.7 M_{\odot} cannot be exist.
- Actually 2M_{\odot} neutron stars are observed and they require $m_{\chi} = 1.2 \text{ GeV}$.
- χ must have repulsive self-interactions.

APR : calculated by Akmal, Pandharipande, and Ravenhal Stiff & Soft : uncertainties associated with the nuclear interactions

Measurement principle

Neutron lifetime is calculated from the number of **beta decay** and **³He absorption**.

• This is an in situ detection system of the neutron decay and flux.

$$\tau_n = \frac{1}{\rho \sigma v} \left(\frac{S_{\rm He} / \varepsilon_{\rm He}}{S_\beta / \varepsilon_\beta} \right)$$

τ _n	Neutron Lifetime		
ρ	³ He density	Sβ	Number of beta decay signal
σ	³ He neutron absorption cross section	S _{He}	Number of ³ He absorption signal
V	Neutron velocity	3	Cut efficiency

J-PARC MLF BL05

Neutron is produced by injecting proton beam to mercury target.

Beam line property

Neutron energy : ~10 meV Neutron velocity : ~1000 m/s **beta decay rate** : 0.1 cps **³He absorption rate** : 2.5 cps

Spin Flip Chopper

makes short neutron bunches to reduce background.

<image>

3He absorption

Iron shield

TPC

Chamber

Beam dump

Lead shield

⁶LiF shutter is a 5 mm thick ⁶LiF plate to control neutron beam. **Cosmic veto counters**

is plastic scintillators to identify cosmic ray.

Acquired data

٠

We acquired 6 measurement series.

- One measurement is corresponding to one gas set (~ one week).
- In this talk, the datasets (until 2016) were used for analysis.
- Total beam time was 282 hours.

Gas	Date	MLF power [kW]	Beam time [hour]
I	May 2014	300	35.3
П	April 2015	500	15.8
III	April 2016	200	17.5
IV	April 2016	200	72.7
V	May 2016	200	69.4
VI	June 2016	200	71.1

Analysis

We counted the number of $S_{\beta}, S_{\mathrm{He}}$ using

- time of flight
- energy deposit
- track geometry.

Cut efficiencies ε_{β} , ε_{He} were calculated by simulation.

Injected ³He 1

Literature value
 5333 ± 7 barn
 2200 m/s
 Simulation

- Background contamination for S_eta was estimated by simulation.
 - The scattering neutrons produce this irremovable background.

Results

٠

٠

The neutron lifetime was calculated for each measurement.

The combined results from 2014 to 2016 is

$$\tau_n = 896 \pm 10 \text{ (stat)} ^{+14}_{-10} \text{ (syst) sec}$$

Results

Out result is plotted on the neutron lifetime history.

- It is consistent with the other beam method and 1.0σ away from the storage method.
- Upgrade projects are ongoing to achieve our goal precision of 0.1% (1 sec).

Upgrade plans

Neutron beam upgrade

- Neutron bunching machine (SFC) coil and mirror will be enlarged to transport more neutron beam.
- Five times beam will be available.
 And **100 days** measurement achieves
 0.1% (1 sec) accuracy.
- Low gas pressure operation
- Lower scattering neutron in the TPC gas leads lower backgrounds (×1/2-1/10).
- New ASIC amplifier was developed for lower power consumption (×1/50) and higher gain (×1-10) compared to current amp.

Solenoidal magnet background suppression

- Background electron coming from detector walls will be suppressed by magnetic field (×1/20).
- The detector commissioning was completed.
 We will have a beam test on the next month.

New ASIC amp

Magnet and detector

Summary

Neutron lifetime is an important parameter for BBN and CKM matrix, however there is **8.6 s (4.0σ)** deviation between two methods of measurement.

- The discrepancy may be explained by unobserved neutron dark decay modes.
 - Some of them were already eliminated.
- We are measuring the neutron lifetime at J-PARC MLF BL05.
 - The acquired data (2014-2016) were analysed.
- Our result is

٠

$$\tau_n = 896 \pm 10 \text{ (stat)} ^{+14}_{-10} \text{ (syst) sec}$$

- Upgrade plans are ongoing
 - Beam optics upgrade makes beam intensity by 5 times
 - Low gas pressure operation suppress the background
 - Magnetic field suppress the background