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Neutron lifetime

- The neutron decay with a mean lifetime of 879.4 + 0.6 sec.

n—->pt+e +r,

- The lifetime has been measured by two types of method.
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Beam method count dead neutrons.
Storage method count living neutrons.

The discrepancy (8.6 sec or 4.00) of these two methods is a long time problem.
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Beam method: 888.0 + 2.0 sec
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Beam method

Measurement of the neutron lifetime by counting trapped protons in a cold neutron beam.
J. Nico et al. Physical Review C 71.5 (2005): 055502.
™h = 886.6 = 1.2 (stat) = 3.2 (syst) sec

Improved determination of the neutron lifetime.
A. T. Yue et al., Physical review letters 111.22 (2013): 222501.

Tnh = 887.7 = 1.2 (stat) = 1.9 (syst) sec

Monochromatic neutron beam was transported to the magnetic trap.
Neutron flux was monitored by a 6Li and detectors.
Protons from the neutron decays trapped in the magnetic and electric field.
Stored protons are released and detected by a proton detector.
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Storage method

PNPI/ILL Large storage bottle
New neutron lifetime measurements
with the big gravitational trap and review of neutron lifetime data.

Serebrov, A. P. et al., Knk Energy & Physics, 3(1) (2018) 121-128. .
Tn = 881.5 £ 0.7 (stat) = 0.6 (syst) sec

LANL Magnetic Trap
Measurement of the neutron lifetime using an asymmetric

magneto-gravitational trap and in situ detection.
R. W. Pattie Jr. et al., Science 10.1126/science.aan8895 (

™h = 877.7 = 0.7 (stat) +04/_o.2 (syst) sec
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PNPI/ILL Magnetic bottle
Measurement of the neutron lifetime
with ultra-cold neutrons stored in a magneto-gravitational trap. ase

Ezhov, V. F. et al., JETP Letters (2018) 1-6.
T™h = 878.3 = 1.6 (stat) = 1.0 (syst) sec




Physics motivation



S1g bang nucleosynthesis

Be 1
Light elements (A=7) were created Gy 107
In 103 seconds after the big bang.
Abundance of them is calculated by
baryon-to-photon ratio

urrrrrrmr

' (d,p) 10
nuclear cross sections *He oo
e a- %, |
neutron lifetime. (W,H{dm 5 Im.m o
e (ny) d (d.p) t 10®

A recent observation! has a small |
inconsistency with the standard cosmology. T R
Effective neutrino generation Cosmic time (in seconds)

http://www.einstein-online.info/spotlights/BBN_phys
Nert = 3.51 + 0.35

IS 1.50 deviation from 3.
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CMB+BAO observation? independently
result Neff = 3.26 + 0.28
which has 1.00 deviation from 3. -

Peimbert:2007
In-Beam: 886.8 + 2.2 sec

e
(V)
3}

lllllllllllll|[lll|llll

0.245

Ratio of He/H Abundance (Yp)

0.24 UCN: 879.6 + 0.8 sec
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Unitarity of CKM matrix

Neutron decay Iis one way to verify
the unitarity of the CKM matrix (Cabiblbo-Kobayashi-Maskawa).

Calculation of Vug from neutron decay is simpler than nuclear ones
but parameters have larger uncertainty.

(4908.7 + 1.9) sec
Tn(1 4+ 3A?)

- Neutron lifetime tn (0.07%)

* Axis/vector coupling constants A = Ga/Gv (0.18%) |Vud\2 =

The parameters summarized by PDG2019 is consistent with unitarity.

V21V "+ ]|V, [* = 0.9994 £ 0.0005

0.97446 £ 0.00010 0.22452 £ 0.00044  0.00365 = 0.00012 '\
Verens = | 022438 £0.00044  0.97359 ) ooorr  0.04214 + 0.00076

0.00896 ©( 0003 0.04133 £ 0.00074  0.999105 + 0.000032)

PDG 2019




Unitarity of CKM matrix : Vugand A

Vud

0.98

0.978k

0.976

0.97 %
o7z
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0.966

Vud : Unitary

< A : Pre 2002

A : Post 2002—
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Vud : Nuclear decay (0+ —0+)

Tn : Bottle method

Tn : Beam method
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Unitarity of CKM matrix : Vugand A

Vud

0.98

0.978

0.976

0.974

0070k

Vud : Unitary

Vud : Nuclear decay (0+ —0+)

Tn : Bottle method

< A\ : Pre 2002

A : Post 2002—
Tnh : Beam method

séiilllllllllllllllllitiiilllllllll

oo

1.266 1.268 1.27 1.272 1.274 1.276 1.278 1.28 1.282
A

with new radiative correction

PRL121, 241804 (2018)



Unitarity of CKM matrix : Vugand A

Vud

0.98
0.976
0.974

0.966

iéii|lll|lllllll|llllii?%i[llllllll

< A : Pre 2002

A : Post 2002—
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| A : New measurement

PERKEO-III ,PRL122, 242501 (2019)

with new radiative correction

Vud : Nuclear decay (0+ —0+)

Tn : Bottle method

™n : Beam method

1.266 1.268 1.27 1.272 1.274 1.276 1.278 1.28 1.282

PRL121, 241804 (2018)
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Unitarity of CKM matrix : Vugand A

A : New measurement
PERKEO-IIl ,PRL122, 242501 (2019)

Vud : Unitary with new radiative correction

PRL121, 241804 (2018)
Vud : Nuclear decay (0+ —0+)

0.97 Tn : Bottle method

0.968
0.966
- . Tn : Beam method
09 W;éi|IIIIIIIIIII|IIIltlv{'}tsilfII|III|II
'?f‘ze4 1.266 1.268 1.27 1.272 1.274 1.276 1.278 1.28 1.282
A : Another new measurement A

aSPECT, arXiv:1908.04785v1
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Neutron dark decay



Neutron dark decay

PHYSICAL REVIEW LETTERS 120, 191801 (2018)

Editors' Suggestion Featured in Physics

Dark Matter Interpretation of the Neutron Decay Anomaly

Bartosz Fornal and Benjamin Grinstein
Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA

® (Received 19 January 2018; revised manuscript received 3 March 2018; published 9 May 2018)

This paper suggested that the discrepancy can be explained
by previously unobserved dark matter decay modes with 1% of usual beta decay.

Three decay mode candidates, where y and ¢ are dark matters

n— yy (937.900 MeV < m, < 938.783 MeV)
n— yete~ (937.900 MeV < m, < 938.543 MeV)
n— gy (937.900 MeV < m, +my < 939.565 MeV)

The arrowed mass ranges are very short.
These boundaries come from the stability of proton and °Be.
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Decay mode : n — yy

. The predicted energy range of gamma ray is 0.782 MeV < E < 1.664 MeV.

The dark decay emits monochromatic gamma ray.
- No gamma ray peak was observed with a germanium detector.
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Decay mode : n — ye e~

- They searched dark decay branch, n — yete™,
in the electron spectrum data taken for A measurement (PERKEO-II).

- Constraints on the Dark Matter Interpretation n — ye e~
of the Neutron Decay Anomaly with the PERKEO [l experiment

- This work constraints electrons energy for 37.5 keV < E_,,- < 664 keV with 50.
- E,,- <30 keV is still alive.
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Decay mode : n — y@

Neutron star gives a constraint on characteristics of y.

Suppose m, ~ m,, neutron star whose mass is over 0.7Me cannot be exist.

Actually 2Ms neutron stars are observed and they require m, = 1.2 GeV.

y must have repulsive self-interactions.

APR : calculated by Akmal, Pandharipande, and Ravenhal
Stiff & Soft : uncertainties associated with the nuclear interactions
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Phys. Rev. Lett. 121, 061802



Lifetime measurement at J-PARC



Measurement principle

Neutron lifetime is calculated from the number of beta decay and SHe absorption.
This is an in situ detection system of the neutron decay and flux.

Tn Neutron Lifetime
_________________________________________________ Number of
3
_ 1 OHe / CHe \ | o Hedensity | P betadecaysignal
Tn T S o *He neutron absorption | g Number of
POV B / e J |- cross section |7 3He absorption signal
Y Neutron velocity € Cut efficiency
SH SH
n-+"ne—p-+
SHe absorption
=572 keV =191 keV
_____________________________ 0] G LTS
n—p+e -+
beta decay
< 0.754 keV < 782 keV TPC Gas
4He:CO2:3He =

85 kPa:15 kPa: 100 mPa
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J-PARC MLF

305

Neutron is produced

by injecting proton beam
to mercury target.

Beam line property
Neutron energy
Neutron velocity
beta decay rate

. ~10 meV
: ~1000 m/s Jm—
0.1 cps Hel | Beam Line 05
SHe absorption rate : 2.5 cps — |
j Vacuum
| Chamber
m _ ¥ |
Is \—‘ = —

4

Beam dump

Spin Flip Chopper
makes short neutron bunches -
to reduce background.

Lead shield
Iron shield
\
6LiF shutter Cosmic veto counters
Is a 5 mm thick 6LiF plate is plastic scintillators

to control neutron beam. to identify cosmic ray.
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Acquired data

We acquired 6 measurement series.
One measurement is corresponding to one gas set (~ one week).
In this talk, the datasets (until 2016) were used for analysis.
Total beam time was 282 hours.

MLF power Beam time
[KW] [hour]
I May 2014 300 35.3
|l April 2015 500 15.8
1l April 2016 200 17.5
\Y April 2016 200 2.7
V May 2016 200 69.4

VI June 2016 200 71.1



Analysis

We counted the number of Sﬂ, SHe USING | Data analysis
- time of flight -~ 1 SHe/gHe
+energy deposit n —
. track geometry. pov S B / e
Injected 3He T  TLiterature value T Simulation
5333+7b lysi
Cut efficiencies &g, e, Were calculated by simulation. 2200 m/s AR

Background contamination for Sﬂ was estimated by simulation.
-+ The scattering neutrons produce this irremovable background.
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_ c
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Results

The neutron lifetime was calculated for each measurement.

The combined results from 2014 to 2016 IS
7, = 896 £ 10 (stat) J_f%g (syst) sec
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Results

Out result is plotted on the neutron lifetime history.
- It is consistent with the other beam method and 1.00 away from the storage method.

Upgrade projects are ongoing to achieve our goal precision of 0.1% (1 sec).
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Upgrade plans :

Coil Mirror
Neutron beam upgrade I
- Neutron bunching machine (SFC) S S m
coil and mirror will be enlarged T 51 Neutron beam
to transport more neutron lbeam. j@¥

- Five times beam will be available.
And 100 days measurement achieves
0.1% (1 sec) accuracy.

Low gas pressure operation

- Lower scattering neutron in the TPC gas
leads lower backgrounds (x1/2-1/10).

- New ASIC amplifier was developed
for lower power consumption (x1/50) and
higher gain (x1-10) compared to current amp.

- Solenoidal magnet background suppression
- Background electron coming from detector walls
will be suppressed by magnetic field (x1/20).
The detector commissioning was completed.
We will have a beam test on the next month.
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Summary

Neutron lifetime is an important parameter for BBN and CKM matrix,
however there is 8.6 s (4.00) deviation between two methods of measurement.

The discrepancy may be explained by unobserved neutron dark decay modes.
Some of them were already eliminated.

We are measuring the neutron lifetime at J-PARC MLF BLOS.
The acquired data (2014-2016) were analysed.

Our result is
t. = 896 = 10 (stat) J_f%g (syst) sec

Upgrade plans are ongoing
Beam optics upgrade makes beam intensity by 5 times
Low gas pressure operation suppress the background
Magnetic field suppress the background
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