PRESENT STATUS OF MUON PRODUCTION TARGET AT J-PARC MLF MUSE

J-PARC CENTER, MLF DIVISION, MUON SECTION
HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION,
INSTITUTE OF MATERIAL AND STRUCTURAL SCIENCE
(IMSS, KEK)

SHUNSUKE MAKIMURA, S. MATOBA, N. KAWAMURA
ON BEHALF OF MUON SCIENCE SECTION
SHUNSUKE.MAKIMURA@KEK.JP
This talk is my final presentation and my final job for muon production target.
My next interest is to develop the target out of SiC and tungsten. In four days, I will transfer to Hadron Section in J-PARC to construct COMET target.
OVERVIEW OF MUON PRODUCTION TARGET AT J-PARC MLF MUSE
MATERIALS AND LIFE SCIENCE EXPERIMENTAL FACILITY (MLF)

- Neutron Target
- 3GeV-RCS
-Muon Target (Graphite)
-5 % beam loss

1MW in future
500kW at present

Production of the most intense pulsed muon beam all over the world
MUON TARGET AT PROTON BEAM LINE

- Muon Target at FL 1.6m is highly activated.
- 2-m Iron-shield is required for maintenance
- Access of worker from maintenance area (FL 4m- 6m)
- Replacement by remote handling

- Residual radiation dose: 5 Sv/h @ surface
- Tritium production on target: 0.5 TBq/year @ 1 MW

Cutting section of proton beam line
MUON PRODUCTION TARGET

- Target material is polycrystalline graphite, IG-430U.
- To extend lifetime, the fixed target was replaced with rotating target that disperse the radiation damage of graphite.

Fixed target, from 2008 to 2014
Lifetime: Irradiation damage of graphite
1 year at 1 MW operation

Rotating target, from 2014
Lifetime: Bearings
Aiming Lifetime: 10 years at 1 MW operation

H. Matsuo, graphite1991
[No.150] 290-302
CONCEPTUAL DESIGN AT MLF MUSE, BASED ON INSTRUCTION FROM PSI

- Since Muon Technical Advisory Committee, 2004
- Rotating Target, Vacuum chamber, Pillowseal, Cask,

Recent collaboration
- Investigation of bearing with long lifetime
- Application to external funding for further collaboration
- Remote handling, Vacuum application, Industrial technologies,
In front of Hot cell
September 2014

MUON TARGET SYSTEM
HISTORY OF MUON TARGET SYSTEM

<table>
<thead>
<tr>
<th>Year</th>
<th>M1/M2</th>
<th>F-Target</th>
<th>R-Target</th>
<th>T system</th>
<th>R. H.</th>
<th>Diagnostic</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>Design</td>
<td>Developments & Fabrication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Timeline

- **2010**: Operation
- **2011**: Shutdown by Earthquake
- **2012**: Operation
- **2013**: Shutdown by Hadron Accident
- **2014**: FT → RT#1
- **2015**: Interruption 2 weeks by trouble on rotation system
- **2016**: Operation
- **2017**: SC-1#1 → SC-1#2
- **2018**: Replacement
- **2019**: Replacement

Legend
- Red: Operation
- Orange: Interruption
- Blue: Design
- Green: Replacement
- Black: Developments & Fabrication
- Yellow: Installation
M1/M2 TUNNEL

Air-circulation system
Closed with operation
Open w/o operation

Movable ceiling shields

Profile monitor & Current transformer

Maintenance area

Turbo molecular pump

Muon target

Scraper #1,2

Magnets

To Neutron source

From 3NBT, RCS

M1 tunnel

M2 tunnel

FL10m

FL4m

FL1.6m
MUON TARGET SYSTEM

- Typical vacuum pressure: 3×10^{-5} Pa
- Black coating inside the chamber for increment of emissivity

- Pillowseal: I.D. 250mm
- 10^{-8} Pam3/sec.

- Thermal spraying of Al
For beam collimation, two scrapers are located downstream of muon target.

- 20 kW beam loss on scraper #1
- Thermocouples were affected by thermal radiation from rotating target.
- Scraper #1 was replaced with modified one in September 2015.
- Measurements of temperature are appropriate at present.

Temperature rise: 17 K @ 500kW operation

Beam path along beam emittance
TRANSFER CASK

- Transportation of radioactive components by Transfer cask
- Beam line, Tentative storage pod, Hot cell, Underground storage room, Water-piping drying room
- Remote-controlled gripper

30-m travel to underground storage room
REMOTE-CONTROLLED REPLACEMENT OF TARGET

- Used target rod is replaced with new one in Hot cell. Plug shield is re-used.
- Volume reduction by cutting device.
- Stored in storage vessel.

- Used target rod is replaced with new one in Hot cell. Plug shield is re-used.
- Volume reduction by cutting device.
- Stored in storage vessel.
MUON PRODUCTION TARGET

Muon Fixed Target in beam line
November 2013
Muon Fixed Target from 2008 till 2014

Isotropic Graphite IG-430U (Toyo Tanso)
Diameter; 70mm
Thickness; 20mm

P-Beam diameter; 14 mm (2sigma)
Design: 4kW heat @ 1MW proton beam
In actual: 1.3 kW @ 333 kW p-beam

Titanium layer as stress absorber
Silver brazing method

Stainless steel pipe (Water)
Copper frame
Hot Iso-static Press method

6-years stable operation W/O replacement
Lifetime: Irradiation damage of graphite 1 year at 1 MW operation

R&D FOR FABRICATION OF MUON FIXED TARGET

- HIP method for fabrication of Cu frame
- Cu-SS316L bonding, and Cu-Cu bonding
- Silver brazing method for graphite
- Metallization by 72Ag/26Cu/2Ti in advance
MUON ROTATING TARGET SINCE 2014

- Rotating target method is applied to distribute the irradiation damage of graphite to a wider area.
- Cooling by thermal radiation
- Lifetime of graphite: 30 years
- Lifetime is determined by solid lubricant of bearings

Solid lubricant:
- Silver coating with MoS2, Lifetime: < 1 year
- Tungsten Disulfide at J-PARC MLF
 Aiming lifetime; 10 years

P-Beam diameter; 14 mm (2s)
4kW heat @ 1MW proton beam
Thickness of graphite 20 mm
DEVELOPMENTS OF MUON ROTATING TARGET

- Validation for FEM simulation
- Duration tests for WS$_2$ lubricants in vacuum & at high temperature.
- Actual operation: 15 r.p.m.
- Accelerated test: 300 r.p.m.
- Stable operation with 5×10^6 revolutions
- Finally, rotating target was installed in 2014.

Motor Torque (x 10%)

WS$_2$ lubricants

9 days with 300 r.p.m.
HISTORY OF BEAM OPERATION

By Fixed target

Rotating Target without replacement
- Operational time: 17000 hours (Nov. 2014 ~ July. 2019)
 6000 MWh
- Rotation: ~16 M revolutions
 (4.5 M revolutions /year @ 15r.p.m.)
- Stable 500-kW operation in 1 year

By Rotating target

Oct. 2014

1 MW proton beam operation

Trouble on rotation system Muon experiment was interrupted for 2 weeks.
RECENT PROGRESS OF MUON TARGET

Scraper replacement
September 2015
ALMOST 1-MW OPERATION TEST

The 1-MW operation for 11 hours was successfully completed on 3rd July, 2019.

The results showed in good agreement with predictions through the simulations.
Trouble on Rotation System in 2018

- When rotation feedthrough from air to vacuum was replaced in regular maintenance of 2018, the flexible coupling was broken.
- We found the mistake of the machining process.
- We could replace the broken one.
- But the problem is that two couplings are used in the rotating target. The lower one could not be replaced easily.
- Continuation of operation by current target with upgrade of exhaust of vacuum pump system and diagnostic.

1MW test

4(He, HT)

3(He, T, HD, H₃)

Quadrupole mass spectroscopy

Buffer tank for tentative storage of exhaust

Rotating target

Flexible couplings

Broken flexible coupling

Rotation motor
Trial for Replacement of Coupling

Replacement of Rotating Target

☐ Trial for replacement of coupling (Plan A)
 Residual radiation dose at coupling position:
 2 mSv/h @ surface 100 times higher than prediction due to effect of Th. Neutron
 Resign

☐ Replacement of target (Plan B)
 Residual radiation dose at target position:
 500 mSv/h @ 10 cm
 Completed

Commissioning of Plan A in storage pod by cold target

Green house for contamination barrier

Air-blower to keep negative pressure inside cask

Used rotating target in storage pod

by Matoba
Upgrade of Diagnostic system

- To measure temperature of rotating target quickly, radiation-hard infrared camera was installed 12-m upstream of target this summer.
- The measurements will start in November 2019.
Position of target chamber in September, 2005

ACKNOWLEDGEMENT
Thank you so much for your support & collaboration. Keep support & collaboration with Muon group. I will move forward, and you should.

It was a great fun!!

SUMMARY