14–15 Nov 2024
熊取交流センター すまいるズ 煉瓦館
Asia/Tokyo timezone

Trajectory analysis of the 4-D Langevin model using principal component analysis/主成分分析による4次元ランジュバンの軌道解析

14 Nov 2024, 16:00
2h
熊取交流センター すまいるズ 煉瓦館

熊取交流センター すまいるズ 煉瓦館

大阪府泉南郡熊取町五門西1丁目10番1号

Speaker

Yuta/悠太 Mukobara/向原 (Institute of Science Tokyo/東京科学大学)

Description

The four-dimensional Langevin model [1,2,3] is a nuclear physics model that allows for the independent treatment of each fission fragment and accurately reproduces the total kinetic energy (TKE). However, due to the multidimensional nature of the model, it is challenging to quantitatively determine which physical quantities exhibit a strong correlation with nuclear fission. In this study, we applied Principal Component Analysis (PCA) [4] to project the fission trajectory data obtained from the four-dimensional Langevin model onto a space defined by principal component vectors, aiming to identify the most significant physical quantities. Specifically, we used 1000 events for each of the standard and super-short fission modes of $^{258}$Fm to obtain the variance for the PCA analysis. Based on these findings, our results indicate that contributions from components different from those typically assumed became more prominent.

References
[1] M.D. Usang, F.A. Ivanyuk, C. Ishizuka, S. Chiba, Sci. Rep. 9, 1525 (2019).
[2] C. Ishizuka, M.D. Usang, F.A. Ivanyuk, J.A. Maruhn, K. Nishio, S. Chiba, Phys. Rev. C 96, 064616 (2017).
[3] C. Ishizuka, X. Zhang, K. Shimada, M. Usang, F. Ivanyuk, S. Chiba, Front. Phys. 11, 1111868 (2023).
[4] C.M. Bishop, “Pattern Recognition and Machine Learning”, (Springer-Verlag, Berlin, Heidelberg, 2006), Chap. 12, ISBN 0387310738.

Primary author

Yuta/悠太 Mukobara/向原 (Institute of Science Tokyo/東京科学大学)

Co-authors

Chikako/知香子 Ishizuka/石塚 (Institute of Science Tokyo/東京科学大学) Satoshi/敏 Chiba/千葉 (NAT Corporation) Tatsuya/竜也 Katabuchi/片渕 (Institute of Science Tokyo)

Presentation materials

There are no materials yet.