Speaker
Description
Diminishing the amount of high-level nuclear waste accumulated through reactor operation has always been a one of the most important obstacles regarding the long-term implementation of nuclear technologies. While the main efforts have been targeting minor actinides (MAs), long-lived fission products (LLFPs) remain another clear target for which several solutions have already been proposed. Among these solutions is the nuclear transmutation of LLFPs by means of fast nuclear reactors, the feasibility of which has been proven in recent studies [1,2]. For this approach, accurate nuclear data in the keV-neutron region are required for most LLFPs such as
Neutron filter experiments were performed using the NaI(Tl) spectrometer of the ANNRI beamline at J-PARC to determine the neutron capture cross section at the neutron energies of 51.5 and 127.7 keV. A sample containing 404 mg of
In this study, the results of the
[1] Chiba S, Wakabayashi T, Tachi Y, et al. Method to Reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum Reactors. Sci Rep. 2017;7:1–10.
[2] Wakabayashi T, Tachi Y, Takahashi M, et al. Study on method to achieve high transmutation of LLFP using fast reactor. Sci Rep . 2019;9:2–12.
[3] Iwamoto N. Evaluation of Neutron Capture Cross Sections and Covariances on
[4] Rovira G, Kimura A, Nakamura S, et al. Neutron capture cross section measurement of